Sacramento River Nutrient Change Study

A report to the Delta Regional Monitoring Program, State Water Contractors, and Bureau of Reclamation

Ву

Regional San - Lisa C. Thompson, Timothy D. Mussen, Michael Cook, Justin Nordin, James Noss, Ursula Bigler, Srividhya Ramamoorthy

Environmental Sciences Associates/Applied Marine Sciences, Inc. - Gry Mine Berg, Sara Driscoll, Clifton Herrmann

Estuary and Ocean Science Center, San Francisco State University – Wim Kimmerer, Toni Ignoffo

U.S. Geological Survey – Tamara Kraus, Joseph Fackrell, Brian Bergamaschi

Resource Management Associates – Marianne Guerin, Richard Rachiele

1 August 2023

Table of Contents

Table of Figures	5
Table of Tables	13
Acknowledgments	14
List of Units	16
Executive Summary	18
Introduction	20
Conceptual Model	24
Study Area	27
Study Design	27
Methods	33
Diversion of Treated Wastewater Effluent from the Sacramento River and Study Area	33
Water Flow and Transport Modeling	33
River Depth Analysis	33
Correlation of RMA Modeled Water Fractions with Discrete Water Sample Water-Quality Characteristics and Constituents	34
High Resolution Water-Quality Monitoring and Mapping	34
Water Column Sampling	
Surface-Water Quality	38
Phytoplankton Density and Biovolume	40
Picocyanobacteria Density and Biovolume	
Phytoplankton Productivity	41
Zooplankton Biomass	42
Zooplankton Growth	42
Clam Biomass and Grazing	43
Quality Assurance/Quality Control Procedures	45
Statistical Analyses	46
Results	46
Water Flow and Transport Modeling	46
River Depth Analysis	48
Correlation of RMA Modeled Water Fractions with Discrete Water Sample Water-Quality Characteristics and Constituents	49
High-Resolution Water-Quality Monitoring and Mapping	50

Water Column Sampling	57
Depth	58
Secchi Depth	58
Turbidity	59
Temperature	62
Temperature Vertical Profiles	63
Dissolved Oxygen	65
Specific Conductance	66
рН	68
Surface-Water Quality	69
Silica	69
Dissolved Inorganic Carbon	71
Dissolved Organic Carbon	72
Dissolved Nitrogen as N	74
Dissolved TKN – N	75
Nitrate – N	77
Nitrite – N	
Ammonium – N	80
Dissolved Total Phosphorus – P	81
Chl-a	83
Phytoplankton Density and Biovolume	86
Picocyanobacteria Density and Biovolume	
Phytoplankton Productivity	
Zooplankton Density and Biomass	97
Zooplankton (<i>P. forbesi</i>) Growth	
Clam Biomass and Grazing	
Summary and Discussion	115
Observed Changes in Environmental Factors and Phytoplankton Responses	115
Observed Food Web Changes	
Observed Conceptual Model Diagram	119
Adaptive Management Approach	
Implications for Future Delta Nutrient Management	
References	

Appendix 1. Relevance of SRiNCS to Management Drivers
Relevance to Delta Regional Monitoring Program Management and Assessment Questions
Status and Trends–Questions 1 and 1C130
Sources, Pathways, Loadings and Processes–Questions 1, 1A, and 2A130
Forecasting Scenarios130
Effectiveness Tracking130
Appendix 2. RMA Modeling of Sacramento River Nutrient Study (Flow and Transport) Final Report131
Appendix 3. RMA Depth Analysis Final Report and Bathymetric Maps
Appendix 4. Relationship of Modeled Water Fractions to Measured Water Quality Characteristics and
Constituents
Appendix 5. Water-Quality Report of Laboratory Analysis230
Appendix 6. Phytoplankton Enumeration Data Table324
Appendix 7. Picoplankton Enumeration Data Table337
Appendix 8. Zooplankton Enumeration Data Table341
Appendix 9. Clam Biomass and Grazing Data Table

Table of Figures

Figure 1. Map of the Sacramento-San Joaquin River Delta showing project sample stations in the lower Sacramento River, Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River, showing high resolution boat mapping transects (purple lines) and the Delta Cross Channel (red line). Yellow circles denote USGS continuous monitoring stations. Green circles denote sample stations......23 Figure 2. Conceptual model figures showing potential ecosystem conditions in the Sacramento River and the three downstream channels - Georgiana Slough, the North Fork Mokelumne River, and the South Fork Mokelumne River - during current nutrient loading (TOP) and during the zero effluent treatment (BOTTOM). The Delta Cross Channel gates, indicated by a gray bar between the Sacramento River and Mokelumne River, were open for the duration of the study......25 Figure 3. Simplified food web diagrams showing wastewater nutrient load (focusing on ammonium and nitrate) and predicted standing stock biomass in the Sacramento River and the three channels during two scenarios: (1) Current effluent nutrient loading, (2) No effluent loading, as occurs during wastewater effluent diversions (lasting up to 48 hours). The channels are expected to have greater light availability (due to being shallower) and longer residence times in comparison with the Sacramento River. The box size shows biomass at each trophic level relative to the other situations. Note that by the time the effluent reaches the channels, some ammonium will have nitrified to nitrate. Also, when there is no effluent loading from the SRWTP, the river and channels still receive nutrients from other sources.26 Figure 4. Change in Sacramento River nutrient loads related to the EVR diversion, including dissolved organic nitrogen (DON) and DIN. The average September loads are estimated by multiplying the average nitrogen concentrations in Sacramento River at Freeport during the month of September from 2013-2020 (collected upstream of the SRWTP discharge point as part of Regional San's monthly compliance monitoring) by the corresponding average daily river discharge at Freeport. The average September loads estimate also includes nitrogen loads in wastewater effluent calculated from the average daily ammonium and biweekly nitrate concentrations multiplied by the corresponding daily effluent flows in 2017 (measured by SRWTP personnel). The EVR load estimate is based on ammonium, nitrate, and dissolved TKN discrete water samples collected from the Sacramento River at Freeport on 9/9/2019, multiplied by the corresponding river discharge at Freeport. On 9/9/2019, the ammonium concentration at Freeport was below our method detection limit, so the full TKN concentration is shown as organic Figure 5. USGS survey research vessel "Mary Landsteiner" and crew conducting a high-resolution water Figure 6. Crew from Regional San, Applied Marine Sciences, Inc., and San Francisco State University Figure 7. Crew from Regional San, Applied Marine Sciences, Inc., and USGS onboard the USGS research Figure 8. Crew from Regional San, Applied Marine Sciences, Inc., and San Francisco State University Figure 10. Concentration of ammonium (NH4, top) and of nitrate (NO3, bottom) observed by the USGS high-resolution mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS crew did not sample the Sacramento River on 9/11/19......52

Figure 11. Concentration of DIN (top) and of DOC (bottom) observed by the USGS high-resolution
mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS crew did not sample the
Sacramento River on 9/11/19
Figure 12. Specific conductance (Sp Cond, top) and concentration of fCHL (Chl, bottom) observed by the
USGS high-resolution mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS
crew did not sample the Sacramento River on 9/11/19
Figure 13. Data generated by the bbe Fluoroprobe during the USGS high-resolution mapping surveys.
(TOP) Chlorophyll fluorescence response attributed to diatoms, reported in µg/L (BOTTOM) Chlorophyll
fluorescence response attributed to blue-green algae (Cyanobacteria), reported in μ g/L. Note that the
USGS crew did not sample the Sacramento River on 9/11/19
Figure 14. Data generated by the bbe Fluoroprobe during the USGS high-resolution mapping surveys.
(TOP) Chlorophyll fluorescence response attributed to Cryptophyta, reported in µg/L (BOTTOM)
Chlorophyll fluorescence response attributed to green algae, reported in μ g/L. Note that the USGS crew
did not sample the Sacramento River on 9/11/19
Figure 15. Depth, measured from sample boats, of discrete water sample stations, on 9/9/19–9/12/19.
Station name abbreviations are defined in Table 6. Note: Missing data at SFM1–SFM4 on 9/12/1958
Figure 16. Secchi depth of discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6. Note: Missing data at SFM1–SFM4 on 9/12/19
Figure 17. Surface-water turbidity at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 18. Mean surface water turbidity from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 19. Surface water temperature at discrete water sample stations, on 9/9/19–9/12/19. Station
name abbreviations are defined in Table 6
Figure 20. Mean surface water temperature from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 21. Temperature vertical profiles at the Georgiana Slough stations (GS) and SREM station (left
panels), and at the South Fork Mokelumne River stations (SFM) and MOKEM station (right panels), on
9/10/19, 9/11/19, and 9/12/19. Note: Data from the North Fork Mokelumne River are missing
Figure 22. Surface water dissolved oxygen concentration (top) and percent saturation (bottom) at
discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.
Figure 23. Mean surface water dissolved oxygen from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 24. Surface water specific conductance at discrete water sample stations, on 9/9/19–9/12/19.
Station name abbreviations are defined in Table 6
Figure 25. Mean surface water specific conductance from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name

abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 26. Surface water pH at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 27. Mean surface water pH from 9/10/19–9/12/19. Black error bars represent standard deviation
of the mean of four sample stations along each channel for each day. Channel name abbreviations:
GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River69
Figure 28. Concentration of silica at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 670
Figure 29. Mean concentration of silica from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 30. Concentration of DIC at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 31. Mean concentration of DIC from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 32. Concentration of DOC at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 33. Mean concentration of DOC from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 34. Concentration of dissolved nitrogen as N at discrete water sample stations, on 9/9/19–
9/12/19. Station name abbreviations are defined in Table 6
Figure 35. Mean concentration of dissolved nitrogen as N from 9/10/19–9/12/19. Black error bars
represent standard deviation of the mean of four sample stations along each channel for each day.
Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South
Fork Mokelumne River
Figure 36. Concentration of dissolved TKN as N at discrete water sample stations, on 9/9/19 – 9/12/19.
Station name abbreviations are defined in Table 6
Figure 37. Mean concentration of dissolved TKN as N from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 38. Concentration of nitrate as N at discrete water sample stations, on 9/9/19 – 9/12/19. Station
name abbreviations are defined in Table 6
Figure 39. Mean concentration of nitrate as N from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River

Figure 40. Concentration of nitrite as N at discrete water sample stations, on 9/9/19–9/12/19. Station
name abbreviations are defined in Table 6
Figure 41. Mean concentration of nitrite as N from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 42. Concentration of ammonium as N at discrete water sample stations, on 9/9/19–9/12/19.
Station name abbreviations are defined in Table 6
Figure 43. Mean concentration of ammonium as N from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 44. Concentration of dissolved total phosphorus as P at discrete water sample stations, on
9/9/19–9/12/19. Station name abbreviations are defined in Table 6
Figure 45. Mean concentration of dissolved total phosphorus as P from 9/10/19–9/12/19. Black error
bars represent standard deviation of the mean of four sample stations along each channel for each day.
Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South
Fork Mokelumne River
Figure 46. Concentration of chl-a at discrete water sample stations, on 9/9/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 47. Mean concentration of chl-a from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 48. Density of phytoplankton by division at discrete water sample stations, on $9/9/19-9/12/19$.
Station name abbreviations are defined in Table 6. On 9/9/2019, samples were only collected at stations
SR1–SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/2019–9/12/201986
Figure 49. Mean density of total phytoplankton from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 50. Mean density of Bacillariophyta from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 51. Mean density of Cyanophyta from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 52. Biovolume of phytoplankton by division at discrete water sample stations, on 9/9/19–
9/12/19. Station name abbreviations are defined in Table 6. On 9/9/19, samples were only collected at
stations SR1–SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/19–9/12/1988

Figure 53. Density of picocyanobacteria at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. On 9/9/2019, samples were only collected at stations SR1 – SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/2019–9/12/2019
Figure 56. Changes with sampling day in A) light attenuation (K_d), B) euphotic zone depth (Z_{eu}) calculated
as 4.6/K _d , and C) time spent in euphotic zone (T_{eu}), calculated as Z_{eu} : Z_m expressed as a percentage, where
Z _m is the mixed layer depth. Gray bars represent mean of four Sacramento River (SR) stations and blue
bars represent mean of four Georgiana Slough (GS) stations
Figure 57. Specific uptake rate of carbon at discrete water sample stations, on 9/10/19–9/12/19. Station
name abbreviations are defined in Table 6. Note: Missing data at NFM2 and NFM4 on 9/11/19
Figure 58. Mean channel-specific carbon uptake (1/h) between 9/10/19–9/12/19. Black error bars
represent standard deviation of the mean of four sample stations along each channel for each day. The
Sacramento River and Mokelumne River were only sampled at a single station. Channel name
abbreviations: SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South
Fork Mokelumne River, and MO=Mokelumne River
Figure 59. Values of δ^{13} C-POC at discrete water sample stations, on 9/10/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 60. Mean δ^{13} C-POC with day for each channel from 9/10/19–9/12/19. Error bars represent
standard deviation of the mean of four sample stations along each channel. The Sacramento River (SR)
and Mokelumne River (MO) were only sampled at a single station. Channel name abbreviations: SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South Fork
Mokelumne River, and MO=Mokelumne River
Figure 61. Concentration of POC at discrete water sample stations, on 9/10/19–9/12/19. Station name
abbreviations are defined in Table 6
Figure 62. Mean POC concentration with day for each channel from 9/10/19–9/12/19. Error bars
represent standard deviation of the mean of four sample stations along each channel. The Sacramento
River and Mokelumne River were only sampled at a single station. Channel name abbreviations:
SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South Fork
Mokelumne River, and MO=Mokelumne River96
Figure 63. Density of zooplankton by division at discrete water sample stations, on 9/10/19–9/12/19.
Station name abbreviations are defined in Table 698
Figure 64. Mean density of total zooplankton from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 65. Mean density of Cladocera from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name

abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 66. Mean density of Copepoda from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 67. Mean density of Ostracoda from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 68. Mean density of Rotifera from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 69. Biomass of zooplankton by division at discrete water sample stations, on 9/10/2019–
9/12/2019. Station name abbreviations are defined in Table 6
Figure 70. Mean biomass of total zooplankton from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 71. Mean biomass of total zooplankton from 9/10/19–9/12/19. Black error bars represent
standard deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 72. Mean biomass of Cladocera from 9/10/19–9/12/19. Black error bars represent standard
deviation of the mean of four sample stations along each channel for each day. Channel name
abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork
Mokelumne River
Figure 73. Measured variables by day of sampling with points shifted in x direction to reduce overlap.
Symbol shape and fill indicates day of sampling, edge color indicates North Fork Mokelumne River or
South Fork Mokelumne River (see legend), and numbers indicate station (Figure 1). A, ammonium
concentration (1 μ mol = 0.014 mg/L); B, chl-a concentration; C, phytoplankton biovolume; D, total
zooplankton abundance; E, zooplankton (P. forbesi) growth rate. Data have been shifted laterally to
avoid overlaps107
Figure 74. Zooplankton abundance by major taxonomic groups for each sample. Samples are identified
by day in September, North Fork Mokelumne River (NFM) or South Fork Mokelumne River (SFM), and
sample station (1–4). Taxa are (top to bottom) copepods including P. forbesi adults plus juveniles (pseu),
and nauplius larvae (pseuN), cyclopoid copepods including adults plus juveniles (cyclA), and nauplii
(cyclN), harpacticoid nauplii (harpN), cladocerans (clad), and Other
Figure 75. P. forbesi. Abundance of nauplii vs. abundance of adult females. Symbols as in Figure 46. Line
with 95% confidence bands is a linear regression line with fixed 0 intercept and a slope of 450 ± 300109
Figure 76. Abundance of common zooplankton taxa collected by EOS group vs. that collected by
Regional San group and analyzed by BSA Environmental Services, Inc. (BSA), Shapes show day of
September 2019, colors of edges show North Fork Mokelumne River vs. South Fork Mokelumne River,

and numbers in symbols give sample station numbers. Lines are 1:1. A, total copepods including nauplii;
B, total cladocerans; C, total ostracods110
Figure 77. Egg production (A) and growth (B) rates of P. forbesi vs. chlorophyll concentration, including
all measurements made to date. Large symbols are from the current study. Lines are fitted to all the
data (Gearty 2021). Growth rates have been adjusted from incubation temperatures to 22 °C for
comparison
Figure 78. Biomass of clams at discrete water sample stations, on 9/24/19–9/25/19 (sampling was
conducted over two days). Station name abbreviations are defined in Table 6. Error bars represent the
standard error of the mean
Figure 79. Estimated grazing by clams (percentage of the water column grazed per day) at discrete
water sample stations, on 9/24/19–9/25/19 (sampling was conducted over two days). Station name
abbreviations are defined in Table 6. Error bars represent the standard error of the mean
Figure 80. Comparison of the biomass of clams in this study at three sample stations on 9/24/19, with
biomass observed at these stations in previous studies in 2013, 2014, and 2016. Station name
abbreviations are defined in Table 6
Figure 81. Comparison of the estimated grazing by clams (percent turnover of water column per day) in
this study at three sample stations on 9/24/19, with grazing observed at these stations in previous
studies in 2013, 2014, and 2016. Freeport is station SR1, RM44 is station SR2, Hood is station SR3.
Station name abbreviations are defined in Table 6
Figure 82. Turbidity recorded at the USGS continuous monitoring station at Freeport, from 9/6/19–
9/13/19. Figure from U.S. Geological Survey (2022)
Figure 83. Discharge recorded at the USGS continuous monitoring station at Freeport, from 9/6/19–
9/13/19. Figure from U.S. Geological Survey (2022)
Figure 84. Simplified food web diagrams for the channel area showing predicted and observed (discrete
water sample) wastewater nutrient load (focusing on ammonium and nitrate) and standing stock
biomass under two scenarios: (1) Current effluent nutrient loading, (2) No effluent loading, as occurred
during the 48-hour EVR diversion on 9/10/19–9/11/19. The box size shows biomass at each trophic level
relative to the other situations
Figure 85. Observed conceptual model showing changes in the food web in the three downstream
channels - Georgiana Slough, the North Fork Mokelumne River, and South Fork Mokelumne River during
the cessation of nutrient loading from the wastewater treatment plant. The Delta Cross Channel gates,
indicated by a gray bar between the Sacramento River and Mokelumne River, were open for the
duration of the study
Figure 86. Estimated changes in Sacramento River nutrient loads related to the EVR diversion and the
EchoWater Project. The pre-EchoWater loading estimate is based on average nitrogen concentrations
and corresponding river discharges in Sacramento River at Freeport during the month of September
from 2013–2020 as well as the average wastewater effluent nitrogen concentrations and corresponding
daily effluent flows in 2017. The EVR load estimate is based on discrete water samples collected from
the Sacramento River at Freeport on 9/9/19, combined with the corresponding river discharge at Freeport. The post-EchoWater data are based on average nitrogen concentrations and corresponding
river discharges in Sacramento River at Freeport during the month of September from 2013–2020 as
well as the average wastewater effluent nitrogen concentrations and effluent flows from May–October
in 2021. Following nitrification and denitrification from the EchoWater Project, ammonium

Table of Tables

Table 1. Configuration of existing USGS continuous water-quality monitoring stations at Freeport (USGS
Station 11447650), Walnut Grove (USGS Station 11447890), and Decker Island (USGS Station 11455478),
showing the water-quality instrumentation and infrastructure at each station (U.S. Geological Survey,
2022)
Table 2. Measurements made continuously (1/second) during high-speed mapping surveys using the
USGS boat-based flow-through system. The "mini-mapper" system deployed on the Guardian vessel did
not include the instruments indicated in blue and italics
Table 3. Reporting limits and method detection limits for discrete water sample water-quality
constituents with some low measured values
Table 4. Summary of depth distributions in the four channels in the study area. Data are drawn from the
depth analysis report prepared by RMA (River Depth Analysis in Support of the Sacramento River
Nutrient Change Study, included in this report as Appendix 3
Table 5. Results of linear regression analysis of modeled water fractions (modeled SRWTP effluent
fraction, % SRWTP, and modeled Mokelumne River fraction, % MOK) and water-quality parameters.
Regressions associated with p-values less than 0.05 are shown in bold
Table 6. Location and names of discrete water sample stations. Latitude and longitude are in decimal
degrees
Table 7. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of water quality
constituents using day and channel as factors. Significant p-values (< 0.05) in bold. Factor 1, Day =
9/10/19, 9/11/19, 9/12/19 (degrees of freedom, df=2). Factor 2, Channel = Georgiana Slough, North
Fork Mokelumne River, South Fork Mokelumne River (df=2). Residuals df = 27 for all constituents
Table 8. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of chl-a and phytoplankton
density and biovolume constituents using day and channel as factors. Significant p-values (< 0.05) in
bold. Factor 1, Day = $9/10/19$, $9/11/19$, $9/12/19$ (df=2). Factor 2, Channel = Georgiana Slough, North
Fork Mokelumne River, South Fork Mokelumne River (df=2). Residuals df = 27 for all constituents85
Table 9. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of phytoplankton indices
including carbon uptake (1/h), δ 13C-POC (‰), and POC (µg C/L) using day and channel as factors.
Significant p-values (< 0.05) in bold. Factor 1, Day = $9/10/19$, $9/11/19$, $9/12/19$ (df=2). Factor 2, Channel
= SREM, Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River, MOKEM (df=4).
- SKEW, Georgiana Slough, North Fork Nokelumie Kiver, South Fork Nokelumie Kiver, Mokelwi (ul=4).
Table 10. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of zooplankton density
rable 10.1 values and 1-values (in parentheses) resulting non-z-way ANOVAS of zoopialikton density

Acknowledgments

We thank the following individuals for their contributions, which made this project possible and much more enjoyable and educational for everyone involved:

Katy O'Donnell, Dylan Burau, Ayelet Delascagigas, Kyle Nakatsuka, Jen Soto-Perez, Crystal Sturgeon, Alan Gelber – U.S. Geological Survey, California Water Science Center, field, laboratory and data processing staff

Elizabeth Stumpner – formerly with the U.S. Geological Survey and currently with the California Department of Water Resources

Paula – Walnut Grove Marina manager

Cathy Ruhl – U.S. Geological Survey, California Water Science Center; use of Mudslinger boat

Matt Heberger – Delta Regional Monitoring Program

Janis Cooke - Central Valley Regional Water Quality Control Board

Josh Israel – Bureau of Reclamation; funding to U.S. Geological Survey, opening of Delta Cross Channel gates

Erwin Van Nieuwenhuyse – now retired from Bureau of Reclamation; funding to U.S. Geological Survey, opening of Delta Cross Channel gates

Darcy Austin – State Water Contractors; funding to San Francisco State University

Lynda Smith – now retired from Metropolitan Water District

Dane Coyle – EchoWater Project Management Office; notification of wastewater effluent diversions

Gisela Cluster – Regional San Environmental Laboratory

Delta Regional Monitoring Program Technical Advisory Committee and Nutrient Sub-Committee

David Senn – San Francisco Estuary Institute

Zhenlin Zhang – California Department of Water Resources

Jon Burau – U.S. Geological Survey; Acoustic Doppler Current Profiler effort

Paul Salop – Applied Marine Sciences, Inc.; Acoustic Doppler Current Profiler effort

Melissa Turner – MLJ Environmental; Quality Assurance Project Plan review, California Environmental Data Exchange Network inputs

Mike Johnson – MLJ Environmental; Delta Regional Monitoring Program proposal comments

Sharon Sargeant – Regional San Public Affairs Office; Sacramento Regional Wastewater Treatment Plant tour

Sacramento River Nutrient Change Study – Final Report

Tarra Thomas – Regional San Operations Support; Sacramento Regional Wastewater Treatment Plant tour

Ed Talamantes, Marty Feldman - Regional San Information Technology; laptops for 8/28/19 test run

Leanne Salerno – Regional San Public Affairs Office; laptops for 8/28/19 test run

Bob Seyfried, Vick Kyotani, Ruben Robles, Ken Abraham – Regional San; coordination of and notifications for the 48-hour wastewater effluent diversion

Hildie Spautz – California Department of Fish and Wildlife; Proposition 1 proposal notification

Bryan Young, Roger Jones – Regional San Bufferlands; use of Bufferlands jon boat

Jeff Sumner – Sacramento Area Sewer District and Goethe office security staff; van "reservation"

Bobbie Seigler – Sea Gear; zooplankton nets

Rebecca Mihai – Regional San Environmental Laboratory; extra shuttle of Guardian keys on 9/25/19

Sabina Rynas – Regional San Wastewater Source Control Section; clam sampling on 9/25/19

Sharon Merker – Regional San Wastewater Source Control Section; clam sampling on 9/24/19

Hannah Bireschi – Regional San intern; clam analysis and trawl distance mapping

Naerika Reihani Hosein Abad - Regional San intern; clam analysis

Piper Crawford – Regional San intern; clam analysis

Guisti's Restaurant-use of dock to scope zooplankton sampling methods

Wimpy's Marina – use of dock to scope zooplankton sampling methods

Funding for this project was provided by the Delta Regional Monitoring Program, the State Water Contractors, and the Bureau of Reclamation. In-kind contributions were provided by the U.S. Geological Survey, the San Francisco State University, and Regional San.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

A	C	1.1		
ist	Ot		n	itc
13 L	U1	U		ILS

1/d	por day
1/u 1/h	per day per hour
1/m	
°C	per meter
	degrees Celsius
cells/L	cells per liter
cfs	cubic feet per second
cm	centimeter
d	day
eggs/female/d	eggs per female per day
GPM	gallons per minute
g/m ²	grams per square meter
individuals/L	Individuals per liter
individuals/m ³	individuals per cubic meter
Kg/d	kilograms per day
km	kilometer
km/h	kilometers per hour
MΩ/cm	megaohms per centimeter
m	meter
m ²	square meter
m ³	cubic meter
m³/g clam/d	cubic meters of water pumped per gram of clam per day
m/d	meters per day
m/s	meter per second
mph	miles per hour
mg/L	milligrams per liter
mg-C/L	milligrams carbon per liter
mg-N/L	milligrams nitrogen per liter
mL	milliliter
mm	millimeter
nm	nanometer
NTU	Nephelometric Turbidity Unit
ppm	parts per million
%	percent
% saturation	percent saturation
% water column grazed/day	percent of water column grazed per day
‰	per mil
psi	pounds per square inch
QSU	quinine sulfate units
RM	river mile
μg C/L/d	micrograms carbon per liter per day
μg dry weight/L	micrograms dry weight per liter
µg/L	microgram per liter
μM	micromole
μm	micrometer (micron)

Sacramento River Nutrient Change Study – Final Report

μm³/L	cubic micrometers per liter
μmol	micromole
μmol photons/m ² /s	micromole photons per square meter per second
μS/cm	microsiemen per centimeter

Executive Summary

The Sacramento River Nutrient Change Study (SRiNCS) was developed with input from multiple stakeholders in the Delta Regional Monitoring Program, as well as the State Water Contractors. We tracked the effects of changes in nutrient loading resulting from a short-term wastewater effluent diversion at the Sacramento Regional Wastewater Treatment Plant (SRWTP). In the summer of 2019, scheduled wastewater effluent diversions occurred during the Effluent Valve Replacement (EVR) project, part of the EchoWater Project upgrade at the SRWTP. During an EVR diversion in early September 2019, no treated effluent entered the Sacramento River for 48 hours, creating a parcel of "without-wastewater" river water approximately 20 miles (32 km) long. We observed the magnitudes and impacts of short-term changes in nutrient loading in water with wastewater (WW+, 9/10/19) and without wastewater (WW-, 9/11/19 and 9/12/19) in the Sacramento River and three downstream channels: Georgiana Slough, the North Fork Mokelumne River, and the South Fork Mokelumne River.

Flow and transport modeling suggested that the proportions of water from three different sources, Sacramento River, SRWTP, and Mokelumne River, varied among the channels. The tidal flux shifted the water in each channel back and forth, and in the case of the South Fork Mokelumne River, caused the predominant input to alternate between Sacramento River water (which included Regional San effluent depending on the phase of our experiment) and Mokelumne River water. As a result, the water in the South Fork Mokelumne River included significant contributions from the Mokelumne River as well as water mixing out of three dead-end side sloughs with longer hydraulic retention time than the main channels, which may have dampened any responses to the changes in wastewater loading.

High resolution boat-based monitoring of water quality complemented and informed the flow modeling efforts and also provided an overview of conditions across the study area each day. Mapping showed that a well-defined WW- treatment, as indicated by changes in the concentrations of ammonium,¹ nitrate, and dissolved inorganic nitrogen (DIN), was produced in the Sacramento River, Georgiana Slough, and North Fork Mokelumne River, while the pattern in the South Fork Mokelumne River was less distinct due to variable contributions from the Sacramento and Mokelumne Rivers. Across the study area, chlorophyll fluorescence (fCHL) did not show a clear increase or decrease in association with the decrease in wastewater nutrient loading. Chlorophyll fluorescence attributed to diatoms decreased in association with the decrease in wastewater nutrient loading from 9/10/19 (WW+) – 9/11/19 (WW-), but only in the North Fork Mokelumne River. Chlorophyll fluorescence attributed to blue-green algae showed a slight decrease from 9/10/19 (WW+) – 9/12/19 (two days of WW- conditions) across the study area.

Based on discrete water-sample measurements from boats sampling in each channel, turbidity decreased significantly with day, as wastewater loading decreased (tests on data from four sample stations in each of the three channels on each of the three days, 9/10/19, 9/11/19, and 9/12/19). Due to

¹ Throughout this report we refer to ammonium (NH₄⁺), although in surface waters there is an equilibrium of ammonium and ammonia (NH₃). We used U.S. Environmental Protection Agency (EPA) method 350.1 (US EPA 2005), for ammonia nitrogen, to analyze our discrete water samples. This method measures both ammonium and ammonia in a sample, regardless of the state of equilibrium at the time of sampling. The term "total ammonia nitrogen" is used in wastewater discharge permits, and this study focused on changes in the loading of different forms of nitrogen, including ammonia, from the SRWTP to the Sacramento River. However, in this report we use "ammonium," the term commonly employed by aquatic ecologists, because ammonium is the dominant form in surface water based on temperature and pH.

the decreased turbidity, light availability increased across the three days of the experiment, but this change appeared to be related to changes in the Sacramento River upstream of the SRWTP discharge point. Concentrations of dissolved nitrogen,² total Kjeldahl nitrogen (TKN), nitrate, nitrite, and ammonium in discrete samples decreased significantly with day. However, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and silica concentrations in discrete samples did not differ significantly with day. Chl-*a* concentrations in the discrete samples did not differ significantly with day. However, carbon uptake, quantified using carbon-13 (¹³C)-incubations, increased significantly with day, while the enrichment of delta carbon-13 (δ^{13} C) in the particle organic carbon (δ^{13} C-POC) became significantly more negative, consistent with higher fractionation by the Rubisco enzyme with higher rates of carbon fixation. Particulate organic carbon (POC) concentrations did not differ significantly with day. The increase in carbon uptake through time was correlated with a sharp increase in water column clarity, measured as a change in Secchi disk depth and photosynthetically active radiation (i.e., PAR) between 9/10/19–9/11/19.

The density and biovolume of phycocyanin-rich (PC-rich) picocyanobacteria and of phycoerythrin-rich (PE-rich) picocyanobacteria, collected by discrete sampling and measured via microscopy, did not differ significantly with day, as wastewater loading decreased. Discrete sample enumerations of blue-green algae (i.e., cyanobacteria (Cyanophyta)) densities decreased significantly with day, as did total phytoplankton density. However, biovolumes of total phytoplankton and of different phytoplankton divisions did not change significantly with day.

Total zooplankton density and Cladocera density decreased significantly with day, but this appeared to be driven by changes in a single channel, the South Fork Mokelumne River. The biomass of total zooplankton, Cladocera, and all other forms of zooplankton biomass did not differ significantly with day. Zooplankton growth metrics appeared to show little or no effect of wastewater or the lack thereof.

Clam abundance was not anticipated to change between treatments. Clam biomass was assessed on one occasion, two weeks after the other sampling, to provide estimates of grazing, which ranged from 0.2 to 8.4%, as a percentage of the water column grazed per day.

During the short-term (48-hour) removal of wastewater effluent and its associated nutrient load from these three river channels in the Sacramento-San Joaquin Delta (hereafter referred to as "the Delta"), we observed statistically significant changes in the abundance of some forms of phytoplankton, as well as changes in phytoplankton productivity, but turbidity also changed with day. Because water clarity can impact phytoplankton communities, this change in turbidity likely confounded effects resulting from changes in nutrient concentrations with the EVR diversion. It will be interesting and informative to see the potential effects of longer-term nutrient loading reductions resulting from the EchoWater Project upgrade to biological nutrient removal at the SRWTP (greater than 95% reduction in ammonium loading and approximately 75% reduction in dissolved inorganic nitrogen loading in the effluent), as well as other nutrient reductions to the Delta that may occur in the future. Such effects remain to be studied now that the SRWTP biological nutrients that may be stored in river sediment or in aquatic vegetation (macrophytes). Additional research focused on the longer-term responses of nutrient cycling, and the

² Total dissolved nitrogen is equivalent to filtered total Kjeldahl nitrogen plus nitrate plus nitrite (i.e., dissolved N = filtered TKN + NO₃ + NO₂), where TKN is dissolved organic nitrogen plus ammonium. Therefore, total dissolved N = DON + NH_4^+ + NO_3 + NO_2 .

abundance and growth of phytoplankton and zooplankton could inform future Sacramento-San Joaquin Delta ecosystem management.

Introduction

The importance of nutrients for phytoplankton growth and biomass has been intensely studied globally during the past century (Ivlev 1966, Sakamoto 1966, Ryther and Dunstan 1971, Dillon and Rigler 1974, Clasen 1980, Canfield and Bachmann 1981, Moore et al. 2013). However, the role of nutrients in the regulation of phytoplankton in the Sacramento-San Joaquin Delta (hereafter, the "Delta") is not well characterized, and this lack of characterization creates challenges for water-quality regulators and organizations that manage nutrient loads to the Delta and its tributaries (Central Valley Regional Water Quality Control Board 2018, Dahm et al. 2016).

In 2009, researchers from the Central Valley Regional Water Quality Control Board completed a series of river transects down the Sacramento River and found that a rapid decline in chl-a concentrations is frequently observed in the lower Sacramento River from the Interstate 80 crossing, upstream of the City of Sacramento, to the confluence with water from Cache Slough (Figure 1), indicating a decline in phytoplankton biomass (Foe et al. 2010). Following the discovery that phytoplankton biomass declines abruptly in the lower Sacramento River, water resource managers became interested in identifying management actions that increase phytoplankton biomass in the north Delta to maintain food supplies for invertebrates and in turn feed local small-sized fishes. In recent years, numerous experiments have investigated the conditions potentially contributing to this observed phytoplankton decline. Parker et al. (2012) theorized that high ammonium concentrations in the Sacramento River from wastewater effluent inputs reduce the growth rates of phytoplankton in this region. Following up on the Parker study, scientists from University of California Santa Cruz and Applied Marine Sciences, Inc., tested the growth responses of phytoplankton species isolated from the Sacramento River and Suisun Bay to increasing concentrations of ammonium in unialgal cultures. The culture studies demonstrated that ammonium concentrations commonly occurring in the Sacramento River were not high enough to inhibit growth of phytoplankton (Berg et al. 2017, Berg et al. 2019). In 2014, the U.S. Geological Survey (USGS) and others completed an adaptive management experiment in the Sacramento River investigating phytoplankton growth through time by tracking parcels of water down the river where diluted wastewater effluent was present or absent (Kraus et al. 2017a). This study found that chl-a concentrations in the tracked water parcels declined at a similar rate when wastewater was present or absent, indicating that factors other than ammonium, such as light limitation, river hydrodynamics, or clam grazing, might be driving the observed phytoplankton decline. Similarly, findings from multiple recent papers reviewed in Cloern (2021) have called the ammonium-suppression hypothesis into question. Recently, Dahm et al. (2016) drew attention to the role of multiple forms of nutrients in the wider Delta, as Delta waters have become clearer and harmful algal blooms have become more common, highlighting the opportunity to study how the EchoWater Project upgrade of the Sacramento Regional Wastewater Treatment Plant (SRWTP) to biological nutrient removal may affect primary producers and food webs in the Delta.

The literature reviewed above suggests that nutrient concentrations do not have a strong effect on phytoplankton growth in the lower Sacramento River compared to other potential factors. What these potential factors may be, and their relative importance to phytoplankton growth in relation to nutrients, is not clear. Factors that have been shown to be important for phytoplankton growth in the lower

Sacramento River include irradiance, water residence time, and temperature (Cole and Cloern 1984, Jassby et al. 2002, Jassby 2008). The lower Sacramento River is characterized by fast water transport times (i.e., short residence times), high turbidity, and a relatively deep water column (7– 10 m). However, downstream of the lower Sacramento River is a series of river channels and sloughs that are shallower, less turbid, and have longer water residence times. In these waterways, the impacts of nutrient-related effects on phytoplankton growth may be more important than in the lower Sacramento River (Figure 1). Water and nutrients from the Sacramento River enter Georgiana Slough, and, via the Delta Cross Channel, the North Fork Mokelumne River, and South Fork Mokelumne River, providing an opportunity to test the effects of differences in water transit time, depth, light, temperature, and nutrient loading on phytoplankton and zooplankton productivity and biomass between the Sacramento River main stem and the downstream channels. High resolution boat mapping, performed by the USGS in support of the Delta Regional Monitoring Program, has detected differing patterns in numerous aquatic variables in these channels, including nutrient concentrations, turbidity, and chl-*a* (Bergamaschi et al. 2017, Downing et al. 2017, Kraus et al. 2017b).

In recent years, several publicly owned treatment works in California have undertaken costly major process upgrades to reduce their loading of dissolved inorganic nitrogen (DIN) to the Delta. The environmental outcomes of the nitrogen load reductions currently completed or underway are still uncertain, although they have been investigated by projects such as the Delta Science Program's Operation Baseline program (Richey et al. 2018; Senn et al. 2020). A major uncertainty regarding the management of Delta nitrogen loading is whether, following the current round of publicly owned treatment works nitrogen load reductions, further nitrogen reductions from publicly owned treatment works or other sources may be considered to achieve specific measurable benefits. As discussed in the Central Valley Regional Water Quality Control Board's Delta Nutrient Research Plan (Central Valley Regional Water Quality Control Board 2018), additional scientific investigations are needed to guide the development of Delta nutrient objectives. For example, will a substantial reduction in DIN concentrations have a positive, neutral, or negative effect on desirable phytoplankton growth in the Delta? And more broadly, what is the relative importance of nutrient concentrations, water transport rates, light levels (irradiance), and grazing by zooplankton and clams, in achieving desirable phytoplankton growth?

The goal of our study was to improve the understanding of the factors and processes regulating phytoplankton production in the Delta. We sought to answer the question "Will phytoplankton biomass, phytoplankton productivity, and zooplankton growth rates increase or decline when nitrogen inputs from Regional San are absent in north Delta rivers?" To do this, we monitored river conditions before and during a wastewater effluent diversion at the SRWTP. In the summer of 2019, scheduled wastewater effluent diversions occurred during the Effluent Valve Replacement (EVR) project, part of the EchoWater Project treatment process upgrade to biological nutrient removal at the SRWTP. During an EVR diversion in early September 2019, no treated effluent entered the Sacramento River for a period of 48 hours. Based on prior research (Kraus et al. 2017a) we anticipated that this should create a parcel of effluent-free river water more than 6 miles long in the Sacramento River. We focused our monitoring on river channels in the east Delta (Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River), where flows are slower and water depths are shallower than in the main-stem Sacramento River, during two days of wastewater-free exposure. We measured or modeled all factors potentially regulating phytoplankton growth, including nutrient concentrations, water clarity, water

quality, water transport, zooplankton abundance, and clam grazing rates. We also measured zooplankton growth in case zooplankton growth responded to potential changes in phytoplankton abundance during the study.

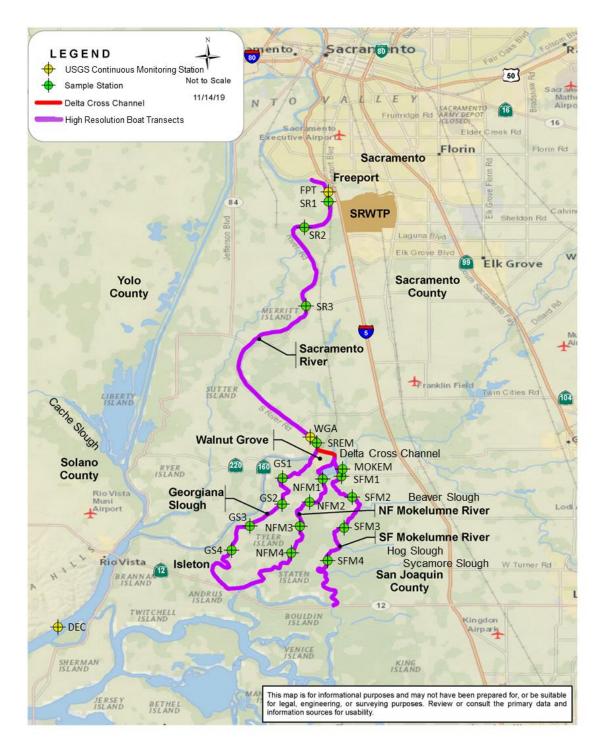


Figure 1. Map of the Sacramento-San Joaquin River Delta showing project sample stations in the lower Sacramento River, Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River, showing high resolution boat mapping transects (purple lines) and the Delta Cross Channel (red line). Yellow circles denote USGS continuous monitoring stations. Green circles denote sample stations.

Conceptual Model

Within our conceptual model, the factors of transit time, light, and nutrient loading result in different outcomes for phytoplankton productivity and biomass occurring in the Sacramento River compared to the three channels (Figure 2). In the main-stem Sacramento River, where water depth is sufficient to make light limiting to phytoplankton growth (Applied Marine Sciences 2017), we predicted that decreased nutrient loading would have little effect on phytoplankton biomass or the higher levels of the aquatic food web. However, in the channels, where a combination of decreased depth, increased transit time, and decreased turbidity may increase light availability (i.e., euphotic zone depth), we predicted that phytoplankton productivity and biomass would be regulated by nutrient availability. Biogeochemical model predictions (Zhang et al. 2018) suggest that reduced nutrient loading from the SRWTP will result in substantial changes in nutrient concentrations in these channels. During a lower nutrient loading scenario, we would expect to see less phytoplankton growth and biomass than under the current loading scenario. We assume that nutrient loading from other sources upstream of Freeport (Figure 1) is constant, and that during the summer SRWTP effluent is a high proportion of the total nutrient load to the Sacramento River. Also, we assumed that travel through this region occurs through a period of days, during which increases in phytoplankton and zooplankton growth rates and potentially also changes in phytoplankton biomass would be detectable. However, changes in zooplankton abundance and clam biomass would be minimal during this short period and difficult to detect. We did not make an assumption about whether increased phytoplankton biomass would be in the form of beneficial or harmful algal species, but we would be able to observe any changes through the highresolution boat mapping surveys, and through phytoplankton enumerations (species counts and biomass). We note that there are numerous theories regarding the controls on phytoplankton productivity and biomass in the Sacramento River, and these simplified conceptual diagrams are not able to illustrate all possible mechanisms and outcomes. However, our experimental design allowed us to observe actual outcomes and relate them to a broad set of environmental factors, including nutrient concentrations and forms, residence time, depth, light, temperature, and zooplankton and clam grazing.

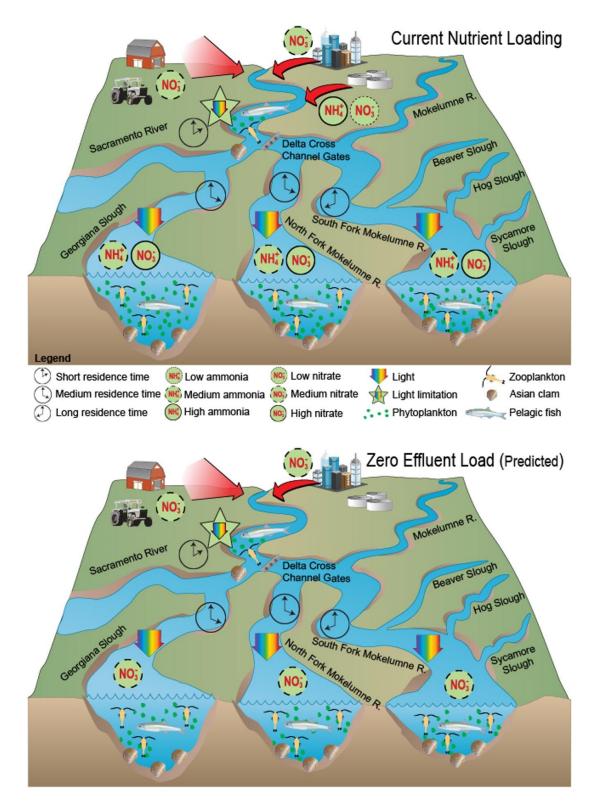


Figure 2. Conceptual model figures showing potential ecosystem conditions in the Sacramento River and the three downstream channels - Georgiana Slough, the North Fork Mokelumne River, and the South Fork Mokelumne River - during current nutrient loading (TOP) and during the zero effluent treatment (BOTTOM). The Delta Cross Channel gates, indicated by a gray bar between the Sacramento River and Mokelumne River, were open for the duration of the study.

The changes in nutrient load and anticipated changes in productivity and biomass can be illustrated more specifically through food-web diagrams (Figure 3). As noted above, increased exposure to light relative to conditions in the main-stem Sacramento River near Walnut Grove is predicted to be available in the three channels, due to a combination of shallower depth and longer hydraulic residence time, resulting in increased phytoplankton growth and biomass during current (baseline) conditions. We anticipated that phytoplankton would spend a longer time in the euphotic zone in the shallower Georgiana Slough and Mokelumne River channels compared with the deeper Sacramento River channel. Whether the light levels were also elevated in these channels relative to the Sacramento River would depend on turbidity levels. Being exposed to non-limiting light for longer durations, due to spending less time below the euphotic zone, increases the potential for rapid phytoplankton growth when other regulating factors, such as sufficient nutrient concentrations and low grazing pressure, are favorable.

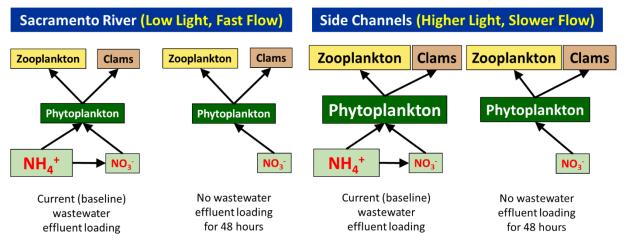


Figure 3. Simplified food web diagrams showing wastewater nutrient load (focusing on ammonium and nitrate) and predicted standing stock biomass in the Sacramento River and the three channels during two scenarios: (1) Current effluent nutrient loading, (2) No effluent loading, as occurs during wastewater effluent diversions (lasting up to 48 hours). The channels are expected to have greater light availability (due to being shallower) and longer residence times in comparison with the Sacramento River. The box size shows biomass at each trophic level relative to the other situations. Note that by the time the effluent reaches the channels, some ammonium will have nitrified to nitrate. Also, when there is no effluent loading from the SRWTP, the river and channels still receive nutrients from other sources.

We also anticipated that the biomass of zooplankton in the channels would be higher than in the Sacramento River, due to the greater availability of phytoplankton biomass to be grazed. During the condition of no wastewater nutrient loading, we anticipated that the already low phytoplankton biomass in the Sacramento River would remain unchanged. However, we anticipated that with no wastewater nutrient loading to the channels, phytoplankton productivity and potentially also phytoplankton biomass would decline. However, in the short time frame of the study, declines in zooplankton and clam biomass would not be observed in the channels.

An overarching assumption of this experiment was that the main factor to be tested would be the presence or absence of treated wastewater. Accordingly, we made the further assumption that, during the three-day study period, inputs to the study region from the Sacramento River upstream of the wastewater treatment plant and from the Mokelumne River would be consistent, allowing us to compare the conditions with wastewater (WW+ (~day 1)) and without wastewater (WW- (~day 2 and

day 3)). In addition, we assumed that, aside from anticipated differences in depth and water residence time, the three channels would display similar hydrodynamics to one another. However, as the reader will see, the comparison of WW+ and WW- conditions was confounded by two factors, a change in Sacramento River water quality (namely turbidity) originating from upstream of the wastewater treatment plant discharge point, and complex hydrodynamics in the South Fork Mokelumne River.

Study Area

The study area included the lower Sacramento River and its three connected downstream channels: Georgiana Slough, the North Fork Mokelumne River, and South Fork Mokelumne River (Figure 1). Nutrient concentrations are typically relatively high in the Sacramento River, mainly because it receives water from multiple sources throughout northern California, including surface runoff, agricultural return, urban runoff, and treated discharge from publicly owned treatment works. Sacramento River discharge rates largely depend on precipitation events and water releases from large upstream reservoirs. During typical summer discharge conditions, the Sacramento River will experience tidal flow reversals at Cache Slough, which can extend upstream past Walnut Grove (Figure 1). The Delta Cross Channel connects the Sacramento River to the Mokelumne River (Figure 1, Figure 2). The Delta Cross Channel gates typically remain open during summer months and remained open for the duration of our experiment. This study area was chosen because of the multiple river channels downstream of the SRWTP that were within the zone of influence of the SRWTP. The channels are close enough to the SRWTP that water parcels with or without treated effluent can be detected and tracked in the river water (i.e., prior to tidal mixing with water from other sources, such as the San Joaquin River). Based on bathymetric charts, we suspected that the channels would be shallower than the main-stem Sacramento River, and this was confirmed by subsequent depth analysis by Resource Management Associates (RMA) (see Appendix 3 of this report). The Sacramento River in our study area had a mean depth of 6.74 m (at Mean Sea Level). In comparison, the mean depth of Georgiana Slough was 5.63 m, the mean depth of the North Fork Mokelumne River was 5.93 m, and the mean depth of the South Fork Mokelumne River was 3.34 m.

Study Design

For this study, we had 17 sample stations in total: three along the main-stem Sacramento River between Freeport and Walnut Grove, a Sacramento River End Member (SREM) station at Walnut Grove, a Mokelumne River End Member (MOKEM) station upstream of the confluence with the South Fork Mokelumne River, and four stations in each of the three channels (Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River) (Figure 1). The three Sacramento River stations and the SREM station were sampled on 9/9/19, for background information. The two endmember stations and the 12 stations in the channels were sampled daily for three days, from 9/10/19– 9/12/1919. The focus of our analyses was the 12 sample stations distributed across three channels.

Operators at the SRWTP halted treated effluent releases to the Sacramento River at the discharge point, located just south of Freeport (Figure 1), for approximately 48 hours, from late on 9/9/19 to early on 9/12/19. This 48-hour period was the longest time possible for a wastewater effluent diversion, given the capacity of the emergency storage basins at the treatment plant. From the beginning of the EVR diversion on 9/9/19, a wastewater-free parcel of water (WW-) developed starting at the Freeport Bridge. The length of the WW- parcel increased during the next 24 hours as it traveled down the Sacramento River and into the Delta Cross Channel. The WW- parcel reached Georgiana Slough at the

end of the day on 9/10/19 and traveled through Georgiana Slough and into the North Fork Mokelumne River and South Fork Mokelumne River by 9/11/19. Sampling in the channels started on 9/10/19 when the WW- parcel was still making its way down the Sacramento River; therefore, the first day of sampling occurred in WW+ water. The second and third days of sampling occurred on 9/11/19 and 9/12/19 in the WW- parcel. In hindsight, we could have improved this study design by continuing to sample for several more days to document any responses to the resumption of effluent loading.

Our study design made use of the already-planned EVR operations at SRWTP to conduct an adaptive management experiment to inform future nutrient management in the Delta. Repeated sampling of discrete stations proceeded throughout the three days, and high resolution boat-based mapping of water quality also proceeded throughout the study area (Figure 1). Throughout our results we have referred to the nutrient "treatment" conditions according to the date of sampling: 9/10/19, 9/11/19, 9/12/19. During the EVR diversion, the loads of ammonium and nitrate from SRWTP were zero (Figure 4), providing an opportunity to investigate the potential impacts of short-term nutrient load reductions that are lower than those mandated in SRWTP's current National Pollutant Discharge Elimination System permit.

Estimated DON and DIN loads at Freeport

Figure 4. Change in Sacramento River nutrient loads related to the EVR diversion, including dissolved organic nitrogen (DON) and DIN. The average September loads are estimated by multiplying the average nitrogen concentrations in Sacramento River at Freeport during the month of September from 2013–2020 (collected upstream of the SRWTP discharge point as part of Regional San's monthly compliance monitoring) by the corresponding average daily river discharge at Freeport. The average September loads in wastewater effluent calculated from the average daily ammonium and biweekly nitrate concentrations multiplied by the corresponding daily effluent flows in 2017 (measured by SRWTP personnel). The EVR load estimate is based on ammonium, nitrate, and dissolved TKN discrete water samples collected from the Sacramento River at Freeport on 9/9/2019, multiplied by the corresponding river discharge at Freeport. On 9/9/2019, the ammonium concentration at Freeport was below our method detection limit, so the full TKN concentration is shown as organic nitrogen.

We identified several areas of potential uncertainty in our experimental design as addressed below. One major uncertainty was that the two different treatments were sampled on different days; thus, changes in environmental variables such as water flow, mixing, irradiance, and temperature could confound the impact of the treatments.

Another uncertainty was that the mixing of water in the vicinity of the Delta Cross Channel is complex and uncertain. In addition, Sacramento River water, including nutrients from SRWTP-treated effluent and other nutrient sources, is likely to be diluted by inflows from the Mokelumne River. We included numerical water flow and transport modeling in our study to generate estimates of water transit time, water source percentage at each sample station, and mixing at confluences. These estimates were used in the interpretation of changes in nutrients, phytoplankton, and other variables. The flow and transport modeling are described in a separate report (Resource Management Associates 2020a), which is included as Appendix 2 of this report.

Depth in the main-stem Sacramento River becomes shallower near Isleton, suggesting that phytoplankton growth could potentially increase there, but the water in this region experiences more tidal reversals and mixing with Cache Slough water that would confound our ability to track phytoplankton growth through the lower Sacramento River. Our choice to focus on the channels in the Georgiana Slough and Mokelumne River region of the Delta was predicated on the opportunity to study the effects of multiple factors and stressors on phytoplankton while minimizing the influence of tidal effects and mixing in of waters (e.g., San Joaquin River, Cache Slough) that might confound the change in nutrient loading due to the treatment plant upgrade.

Our focus on Georgiana Slough, the North Fork Mokelumne River, and South Fork Mokelumne River was also based on our assumption, after examining bathymetric charts, that these channels were shallower than the main-stem Sacramento River. We assumed progressively shallower mean depths moving from west (Georgiana Slough) to east (South Fork Mokelumne River), and that phytoplankton might therefore experience greater irradiance and have higher potential for growth change in response to nutrient loading changes. While we measured river depth at specific locations during the experiment, phytoplankton would have experienced somewhat different depth conditions throughout the study area, and we were concerned that our spot measurements might not be representative. RMA therefore conducted a detailed depth study using recently acquired detailed bathymetry data (funded from an existing contract with Regional San).

There are also several dead-end side sloughs in our study area (Beaver, Hog, and Sycamore Sloughs) in which nutrient dynamics, phytoplankton production, and zooplankton production are largely unknown (Figure 1). There is the potential for water from these side sloughs to mix with water in the South Fork Mokelumne River, which could affect the nature of samples collected in the South Fork Mokelumne River. We designed our project to minimize this potential by locating our sample stations as far as possible from the confluences of these side sloughs with the South Fork Mokelumne River.

To provide an overarching view of patterns that might occur along the river channels beyond what discrete water sample stations could adequately capture, we made use of several USGS continuous high resolution monitoring stations (Burau et al. 2016) in our study area (Figure 1). River discharge, velocity, and other water-quality characteristics from three USGS continuous monitoring stations at Freeport (0.2 km upstream of SRWTP), Walnut Grove (29.2 km downstream of SRWTP), and Decker Island

(approximately 63 km downstream of SRWTP) were used to plan sampling events and document continuous river conditions.

We completed high-resolution mapping of water quality on the three main days of the study, using in situ sensors on a moving boat to obtain spatially explicit nutrient, phytoplankton, and water-quality data and create maps of spatial variation. The USGS research vessel (R/V) "Landsteiner" was used for this work (Figure 5). In addition, the "Guardian" vessel carried a "mini-mapper" high resolution mapping system that provided continuous water-quality data from the North Fork Mokelumne River to help detect water quality (e.g., specific conductance changes that would indicate the arrival of the parcel of WW- water (Figure 6). Combined, these data assisted us in understanding biogeochemical and biological processes in the hydrologically complex river environment in our study area.

Figure 5. USGS survey research vessel "Mary Landsteiner" and crew conducting a high-resolution water quality mapping run. Photo: Timothy Mussen, Regional San.

Discrete water samples at the SREM station provided data for conditions in the Sacramento River and discrete water samples at the MOKEM station provided data representative of the Mokelumne River where it flowed into our main study area (Figure 1). Data from discrete water samples collected at the three additional stations farther upstream on the Sacramento River on the day before the main study began provided additional background information. We used three small boats to sample the total of 17 discrete water sample stations, which allowed us to sample the three channels simultaneously on the three main days of the study. Regional San's "Guardian" vessel sampled stations in the main-stem Sacramento River on 9/9/19 and in the North Fork Mokelumne River on 9/10/19–9/12/19 (Figure 6). The USGS "Mudslinger" vessel sampled stations in Georgiana Slough and one Sacramento River station on 9/10/19–9/12/19 (Figure 7). The San Francisco State University "Twin Vee" vessel sampled stations in the South Fork Mokelumne River on 9/10/19–9/12/19 (Figure 8).

Figure 6. Crew from Regional San, Applied Marine Sciences, Inc., and San Francisco State University onboard Regional San vessel "Guardian". Photo: Tamara Kraus, USGS.

Figure 7. Crew from Regional San, Applied Marine Sciences, Inc., and USGS onboard the USGS research vessel "Mudslinger". Photo: Tamara Kraus, USGS.

Figure 8. Crew from Regional San, Applied Marine Sciences, Inc., and San Francisco State University onboard the San Francisco State University vessel "Twin Vee". Photo: Lisa Thompson.

Our study design used a food web approach, examining many levels of the Delta food web, including physical factors (e.g., Secchi disk depth, turbidity, flow, temperature, pH, specific conductance, dissolved oxygen, and photosynthetically active radiation at select locations), water chemistry, including dissolved inorganic nutrient concentrations, chl-*a*, phytoplankton biomass and species composition, zooplankton biomass and species composition, and clam biomass. We also examined connections between trophic levels, including phytoplankton uptake assays (carbon uptake), zooplankton growth incubations, and zooplankton and clam grazing rates on phytoplankton. We sought to provide a snapshot of the food web in a single week. However, clam sampling was conducted one week after the other field work due to logistical limitations and with the assumption that clam distribution and biomass would not change significantly due to the nutrient loading change or within a one-week period. Details on this sampling are provided in the Methods section of this report.

The surveys were conducted in September, when Sacramento River flow rates are generally low, to minimize the potential effects of high versus low water years on Sacramento River flows. The late summer timing was also chosen to collect samples at a time of year that cyanobacterial harmful algal blooms typically occur in the Delta so that we would be able to detect HAB species if they were present (Berg and Sutula 2015, Lehman et al. 2017). If visual survey of a station indicated that cyanobacterial harmful algal blooms species such as *Microcystis sp.* were present, the team would have collected separate water samples for BSA Environmental Services, Inc., to measure cyanotoxin concentrations, using the Enzyme-Linked Immunosorbent Assay (ELISA).

Methods

Diversion of Treated Wastewater Effluent from the Sacramento River and Study Area

Operators at the SRWTP halted treated effluent releases to the Sacramento River at the outflow site (latitude 38.454161, longitude -121.501654), located just south of Freeport Bridge, from 23:57 on 9/9/19, to 1:19 on 9/12/19.

Water Flow and Transport Modeling

Numerical modeling of proportional water volumes and mixing were performed by RMA using their suite of Delta numerical model applications. The purpose of the modeling was to better understand water sources, mixing, transport time, and age to improve interpretation of the physical, chemical, and biological data collected during the survey. For example, having proportions of source waters at each location sampled, along with travel-time estimates, allowed more accurate determination of whether changes in phytoplankton biomass and species composition are due to growth, grazing, or dilution by tributary inflows.

RMA staff used their numerical modeling applications RMA2, RMA11, and RMATRK to provide hydrodynamic, transport and particle tracking modeling analyses, respectively, of the study area before and during the EVR diversion period to support analysis of the sampling data. RMA estimated the percentage of source waters supplied to the Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River during the study period. Model calculations helped identify sources of phytoplankton, zooplankton, nutrients, and other chemical constituents by identifying the proportion of water in each river sample from different sources. Upstream sources included the SRWTP effluent stream, the Sacramento, Mokelumne, and Cosumnes Rivers, and potentially a downstream source from the San Joaquin River, depending on inflow levels and tidal mixing. Vertical and cross-channel profiles of temperature, dissolved oxygen, specific conductance, and fluorescent dissolved organic matter (collected by the field crews on the USGS Mary Landsteiner and USGS Mudslinger vessels) were used to test the model's replications of water mixing. RMA also used their particle tracking module to calculate particle transport through the study area and estimate travel time of parcels of water entering the study area from different sources or time points.

RMA staff produced a stand-alone final report that was reviewed and approved by the Delta Regional Monitoring Program in September 2020 (Resource Management Associates 2020a). A copy of this report is included within the current report as Appendix 2.

River Depth Analysis

Phytoplankton growth in turbid estuaries and rivers is strongly affected by the amount of light present in the water, which is a function of solar radiation, water clarity, and river depth (Cole and Cloern 1984, 1987, Cloern 1991, 1996). Depth, light attenuation, and turbidity were measured by shipboard sampling of discrete stations during the Sacramento River Nutrient Change Study (SRiNCS). To distinguish phytoplankton responses to light availability at a higher resolution, RMA developed depth histograms in 1-m intervals for the four study reaches of the 2019 SRiNCS (main-stem Sacramento River, Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River). The depths were derived using the 2-m digital elevation map of the north Delta bathymetry developed by the California Department of

Water Resources. The results of the RMA hydrodynamic model runs performed for the September 2019 field study were processed to develop elevation surfaces of Mean Sea Level, Mean Higher High Water, and Mean Lower Low Water, to describe the range of depth conditions throughout the tidal cycle. The gridded bathymetry was subtracted from the model water-surface elevations to produce 2 m x 2 m grids of water depth for the four study reaches. RMA used the grids to generate color-coded depth maps to visually describe the river depths present within the study regions in each of the Mean Sea Level, Mean Higher High Water, and Mean Lower Low Water conditions.

RMA staff produced a stand-alone final report that was delivered to Regional San staff in December 2020 (Resource Management Associates 2020b). A copy of this report is included within the current report as Appendix 3.

Correlation of RMA Modeled Water Fractions with Discrete Water Sample Water-Quality Characteristics and Constituents

To assess the relationship between RMA flow and transport modeling results and observed discrete water sample water-quality characteristics and constituents, we (1) extracted the modeled fractions of SRWTP effluent and Mokelumne River water for each Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River sample station and sampling time (with sampling time matched to the nearest quarter-hour interval) and (2) compared the extracted water fractions with observed discrete water sample characteristics and constituents (DIC, DOC, chl-*a*, dissolved nitrogen, dissolved TKN, calculated DON, nitrate, nitrite, ammonium, dissolved total phosphorus, silica, and turbidity) using a linear regression model.

High Resolution Water-Quality Monitoring and Mapping

River discharge, velocity, and water-quality characteristics (Table 1) were measured every 15 minutes at three USGS monitoring stations: Freeport (FPT, USGS Station 11447650), located 0.2 km upstream from SRWTP, Walnut Grove (WGA, USGS Station 11447890), located 29.2 km downstream of the treatment plant, and Decker Island (DEC, USGS Station 11455478), located approximately 63 km downstream of the treatment plant (U.S. Geological Survey, 2022; <u>http://waterdata.usgs.gov/usa/nwis</u>). The flow and water-quality monitoring data collected by multiple sensors (Table 1) were used to plan the sampling event and document continuous river conditions during the experiment.

Table 1. Configuration of existing USGS continuous water-quality monitoring stations at Freeport (USGS Station 11447650), Walnut Grove (USGS Station 11447890), and Decker Island (USGS Station 11455478), showing the water-quality instrumentation and infrastructure at each station (U.S. Geological Survey, 2022).

Туре	Description
Nitrate Sensor	SUNA Nitrate Analyzer
YSI EXO	EXO Temperature sensorEXO Conductance sensor
	EXO pH sensor
	EXO Dissolved oxygen sensor
	EXO Turbidity sensor
	EXO Fluorescence of dissolved organic matter (fDOM) sensor
	EXO Total algae sensor (fCHL)
	EXO Central Wiper
	YSI signal output adaptors
Infrastructure	Data Collection Platform (enclosure, datalogger, wire and cable, telemetry, solar panels, regulators and batteries)

Underway high-resolution water-quality measurements (Table 2) were collected by USGS personnel from a moving boat (USGS R/V Mary Landsteiner) at speeds up to 13 m/s (~30 mph) following the approach described by Fichot et al. 2015, Downing et al. 2016, Kimmerer et al. 2019, and Stumpner et al. 2020. Sample water was continuously pumped onto the boat using two SHURflo Aqua King II pumps at a pressure of 55 psi and rate of 5 GPM using a pick-up tube mounted at a fixed depth of approximately 1 m below the surface, routed through a 178 μ m in-line strainer to remove large debris, and then into a pressure-compensated manifold that maintained system pressure at a prescribed level irrespective of boat speed, and that diverted excess flow to waste. A 2-stage debubbler was used to remove bubbles that could interfere with optical measurements in the flow-through instrumentation (Downing et al. 2016).

Constant flow rates through each flowpath were controlled via inline metering valves installed in the discharge lines (with the exception of the open split that provided water to the ammonium analyzer), and pressures were monitored using a sight gauge with adjustable knob. The manifold delivered water to the instruments listed in Table 2, providing continuous data collection at a frequency of 1 data point per second, allowing for high spatial resolution. Data were streamed to onboard computers in real time so that the investigators could make real-time decisions about instrument performance and identify regions of interest from identifiable changes along each transect. These data were used to detect the presence and absence of treated wastewater effluent and to quantify wastewater-derived constituent concentrations and effects (Kraus et al. 2017b).

Table 2. Measurements made continuously (1/second) during high-speed mapping surveys using the USGS boat-based flow-		
through system. The "mini-mapper" system deployed on the Guardian vessel did not include the instruments indicated in blue		
and italics.		

Parameter	Instrument
Time	Garmin 16X-HVS global positioning system (GPS) receiver
Position	Garmin 16X-HVS GPS receiver
Temperature	YSI EXO 2; Seabird model SB45 thermosalinograph
Specific Conductance	YSI EXO 2; Seabird model SB45 thermosalinograph
рН	YSI EXO 2
Dissolved Oxygen	YSI EXO 2
Turbidity	YSI EXO 2 Turbidity: WetLabs beam transmissometer
fCHL	YSI EXO 2 Total algae probe; WETLabs model WETStar chlorophyll fluorometer
Phycocyanin	YSI EXO 2 Total algae probe
fDOM	YSI EXO 2; WETLabs Wetstar
Nitrate	Seabird SUNA V2, Satlantic nitrate analyzer
Ammonium	Timberline TL-2800 ammonium analyzer
Phytoplankton taxonomy	bbe Fluoroprobe

The manifold delivered water to three flowpaths: (1) A flow-through system consisting of a thermosalinograph that recorded temperature and specific conductance (Sea-Bird Scientific SB45 (TSG), Bellevue, WA); fluorometers that measured fCHL and fDOM (WETLabs WETstar (WS), Philomath, Oregon); a beam transmissometer that recorded transmittance and attenuation (WETLabs model C-Star transmissometer (CStar), Philomath, Oregon), a nitrate analyzer (SUNA V2; Sea-Bird Scientific, Bellevue, Washington). (2) A flow chamber for a multiparameter water quality sonde (YSI EXO2; Xylem Inc. (EXO), Rye Brook, New York) equipped with sensors to measure temperature, specific conductance, turbidity, pH, dissolved oxygen, fDOM and fCHL that then passed water to a fluorometer designed to measure different algal classes (FluoroProbe III (FP); BBE Moldaenke, Kiel, Germany; Beutler et al. 2002). (3) An open-split interface at atmospheric pressure that served water filtered through a 0.20 µm high-capacity in-line filter (Suez Memtrex, 25 cm length, MNY921EGS) to the on-board ammonium analyzer (Table 2). Flow-through instrumentation was connected using Tygon tubing. All tubing was new, and prior to use, all components of the flow-through system were flushed with organic-free, deionized water.

The ammonium analyzer was a continuous flow, gas diffusion/conductivity-based (Carlson 1978) instrument for ammonium analysis (TL-2800; Timberline Instruments, Boulder, Colorado) that was modified for field operation and continuous data collection by the manufacturer. Modifications included installation in a ruggedized housing, addition of an automated line-switching valve, addition of a heating unit to maintain the instrument at a constant above-ambient temperature, and changes to the software. The analyzer was run in continuous mode with frequent periodic introduction of deionized organic-free water (resistivity >18.2 M Ω /cm), and standard solutions to continuously assess instrument performance and to correct for baseline drift during the day. Full standard curves were run at the beginning and end of each day and partial curves run throughout the day each time the boat stopped to sample.

All instrumentation was cleaned, and calibrations were checked prior to each use following the manufacturer's recommendation or as described below. Data for most instruments were recorded at 1-second frequency on a single data logger (CR6, Campbell Scientific, Logan, Utah) together with a timestamp and boat position obtained from a high-resolution GPS receiver (16X-HVS, Garmin, Olathe, Kansas). The FluoroProbe logged data internally and to the host software every 4 seconds. The ammonium analyzer was connected to a stand-alone computer and collected data through its native software.

High resolution data were merged based on time stamp and processed as described by Downing et al. (2016) and O'Donnell et al. (2022). Briefly, flow-through instrumentation was calibrated by applying temperature corrections to all fDOM and fCHL measurements. In addition, fDOM measurements were corrected for turbidity interference and converted to quinine sulfate equivalents. All instruments used with the flow-through system underwent blank and calibration checks as described in the Delta Regional Monitoring Program Quality Assurance Project Plan (Yee et al. 2019). The flow-through system made redundant measurements (e.g., two fCHL fluorometers, two fDOM fluorometers, two thermistors), which allowed technical staff to check constituent measurement accuracy. Nutrient and chlorophyll data were validated by comparing in situ field data with laboratory results. High-resolution data from the SUNA nitrate analyzer were corrected by regressing instrument response against nitrate concentrations obtained from laboratory measurements of discrete samples collected through the course of each day. Individual sample results more than three standard deviations from the regression were judged to be outliers and removed from the regression (Pellerin et al. 2013). All data were 20-second median filtered and were spatially aligned to facilitate comparison between dates as described by O'Donnell et al. (2022).

During the three days of surveys, the USGS crew collected discrete water samples (analyses for concentrations of nitrate, ammonium, total dissolved nitrogen, phosphate, chl-*a* and pheaophytin, DOC, as well as phytoplankton enumeration and picocyanoplankton counts) at approximately 10 stations to validate and calibrate onboard instruments. Data from these surveys were processed as described by Downing et al. (2016) and Stumpner et al. (2020). Processed nutrient and chlorophyll samples were placed in a cooler on wet ice and shipped overnight to the USGS National Water Quality Laboratory in Lakewood, CO. Further details on processing and analysis of discrete samples, the required blanks and duplicates for each sample type, reporting limits (RLs), and method detection limits (MDLs) are described in the Delta Regional Monitoring Program Quality Assurance Project Plan (Yee et al. 2019) as well as the associated ScienceBase data release (O'Donnell et al. 2022). Data collected by the USGS for

this study are publicly available at the USGS National Water Information System (NWIS, <u>https://waterdata.usgs.gov/nwis</u>; U.S. Geological Survey, 2022) and ScienceBase (O'Donnell et al. 2022).

Water Column Sampling

At each station on the Sacramento River, Georgiana Slough, and the South Fork Mokelumne River, on each day from 9/10/19–9/12/19, a YSI model EXO2 sonde (Xylem Instruments) was deployed to collect a vertical profile of depth (m), temperature (°C, direct measurement, electronic sensor), pH (direct measurement, glass electrode, reference electrode, and automatic temperature compensation), specific conductance (μ S/cm, direct measurement, nickel electrode with automatic temperature compensation; specific conductance readings are automatically corrected to 25°C as part of the specific conductance program within the sonde), dissolved oxygen (mg/L, direct measurement, luminescence based sensor, automatic temperature compensation), and fluorescent dissolved organic matter (QSU). On 9/10/19-9/12/19, three sondes were in use to allow simultaneous sampling on three different boats. The EXO2 sondes were calibrated at the Regional San Environmental Laboratory each morning, and crosscalibrated together for fDOM in ambient river water each day before sampling commenced. Data from each EXO2 sonde were downloaded and stored on the Regional San Environmental Laboratory's servers each evening. On the North Fork Mokelumne River, vertical profiles were sampled as described above, but a Eureka sonde (model Manta+20) with a LI-COR spherical quantum photosynthetically active radiation sensor (model LI-193) was also used to obtain vertical profiles of irradiance. Calibrations and data backup for the Eureka sonde were performed by Applied Marine Sciences, Inc., staff.

Depth and temperature vertical profile data from the sondes were plotted to check for any evidence of temperature stratification at sample stations, which could have predisposed conditions to favor the formation of harmful algal blooms. Surface data (1-m depth) for other sonde variables were copied to field data sheets for subsequent use in graphical and statistical comparisons between sampling dates, stations, and channels.

At each station on Georgiana Slough and the SREM station on 9/10/19-9/12/19, a vertical profile of photosynthetically active radiation (µmol photons/m²/s) was obtained using a LI-COR underwater quantum sensor (model LI-192SA). The LI-192 uses a silicon photodiode and glass optical filters to create uniform sensitivity to light between 400–700 nm, which closely corresponds to light used by most aquatic plants and algae. A precision optical filter blocks light with wavelengths beyond 700 nm, which is critical for measurements in a water column, where the ratio of infrared to visible light may be high.

Surface-Water Quality

In addition to the USGS continuous monitoring stations and high-resolution mapping surveys described above, water samples were collected at pre-determined locations along the Sacramento River, Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River. For discrete water quality, for each sample type, one sample was collected per station, plus one field duplicate per day. On 9/9/19, only the four stations on the Sacramento River were sampled, for a total of five samples (4 stations plus 1 field duplicate). On each of 9/10/19–9/12/19, the sample stations in Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River were sampled, plus the SREM station and MOKEM station, for a total of 15 samples (14 stations plus 1 field duplicate) per day. In all, a total of 46 samples and 4 field duplicates were collected per sample type.

Our surface-water guality methods are summarized below. Sample collection at all 17 discrete sample stations followed the protocols in section 22 of the 2019 Regional San Environmental Laboratory Quality Manual (Regional San Environmental Laboratory 2019). Detailed methods used for water sample collection, storage, and analysis are also included in the Delta Regional Monitoring Program Quality Assurance Project Plan (Yee et al. 2019), including the instrument calibration procedures, maximum holding times to filtration and to analysis, preservative and holding temperature requirements, required blanks, controls, and matrix spikes, reporting limits, and method detection limits. Note that this duplicates the information in the 2019 Regional San Environmental Laboratory Quality Manual, but the Delta Regional Monitoring Program Quality Assurance Project Plan (Yee et al. 2019) may be easier for readers to obtain. At each station, surface water (~0.5 m depth) was collected using an acid-cleaned plastic bucket. Triplicate samples for turbidity were measured at each station using a Hach 2100P turbidimeter following method EPA 180.1. Single samples for determination of ammonium (NH_4^+-N), nitrate + nitrite ($NO_3^-N + NO_2^-N$), TKN (dissolved), dissolved total phosphorus (mainly phosphate as phosphorus, PO₄³⁻-P), DOC, and silica concentrations were filtered through a 0.45 μ m filter, preserved, and stored refrigerated until analysis using standard methods at the Regional San Environmental Laboratory. Sample handling and custody followed the protocols in section 23 of the Regional San Environmental Laboratory Quality Manual (Regional San Environmental Laboratory 2019). Sample containers were pre-labeled with the sample location and Laboratory Information Management System barcode. Date and time collected were added to the label at the time of sample collection.

Sample bottles were packed in ice chests with sufficient wet ice to maintain sample transport criteria. Field sheets were filled out at the time of collection and included site code, site description, GPS location, collection date/time, field physical and water chemistry measurements, and sampler(s) name. Water samples collected for analysis at the Regional San Environmental Laboratory were subject to the maximum holding times and sample collection preservation guidelines in the Manual for the Certification of Laboratories Analyzing Drinking Water 5th Edition, January 2005 (United States Environmental Protection Agency 2005), 40 Code of Federal Regulations (C.F.R.) § 141.13 (1975), and 40 C.F.R. § 141.23 (1991). At the Regional San Environmental Laboratory, water samples were analyzed using the following methods and instrumentation: ammonium was analyzed using EPA method 350.1 (United States Environmental Protection Agency 2005; Lachat Quick Chem 8500 phenol hypochlorite/colorimetric), nitrate + nitrite was analyzed using method EPA 353.2 (US EPA 2005; Lachat Quick Chem 8500, sulfanilamide/colorimetric), TKN (dissolved) was analyzed using method EPA 351.2 (United States Environmental Protection Agency 2005; Lachat Quick Chem 8000, semi-automated colorimetry and flow injection), dissolved total phosphorus was analyzed using method EPA 365.4 (United States Environmental Protection Agency 2005; Lachat Quick Chem 8000, molybdateantimony/colorimetric), DOC was analyzed using Standard Methods [SM] 5310B (Clesceri et al. 1998; DOC OI Analytical TOC analyzer, model 1020A, acidification and infrared detection, high temperature combustion, total dissolved carbon minus DIC), DIC was analyzed using Standard Methods (SM) 5310B (Clesceri et al. 1998), and silica was analyzed using method EPA 200.8 (United States Environmental Protection Agency 2005; Agilent 7900 and inductively coupled plasma/mass spectrometry (ICP/MS), model G8403A, pneumatic nebulization into radiofrequency plasma, vacuum extraction into quadrupole mass spectrometer).

For chl-*a*, the laboratory analytical method was based on "10200 H, Spectrophotometric Determination of Chlorophyll" in *Standard Methods for the Examination of Water and Wastewater - 20th edition*

(Clesceri et al. 1998) but was modified such that samples were filtered within 12 hours of field collection, and that sample filters were frozen for up to 6 months prior to analysis. Samples collected for chl-*a* determinations were analyzed at the Regional San Environmental Laboratory following extraction with 90% acetone. Briefly, 20–100 mL water was filtered onto Whatman glass microfiber filters (GF/F) which were placed in petri dishes, wrapped in foil, and preserved frozen until analysis. The frozen filter containing the sampled phytoplankton cells was placed into a grinding tube to which 90% acetone was added. The glass filter was ground with a glass grinder (manufactured by Wheaton and made of Teflon or polytetrafluoroethylene [PTFE]) for 1–2 minutes. The ground filter was rinsed with 90% acetone into a centrifuge tube and extracted overnight in the refrigerator in the dark. Samples were centrifuged, and the supernatant analyzed at 750 nm (Turner Designs Trilogy model 7200-000 fluorometer with fluorescene module #046).

Within the Sacramento River, on 9/9/19 the crew of the Guardian vessel recorded continuous waterquality measurements while sampling at each station. Within the North Fork Mokelumne River, on 9/10/19-9/12/19 the crew of the Guardian vessel recorded continuous water-quality and variable fluorescence (Fv/Fm) measurements while sampling at each station and during times of slow transit. However, the Fv/Fm data were not usable due to the long time between collection of sample and measurement in the instrument.

Note that in the case of some water-quality constituents, namely ammonium, nitrate, nitrite, and dissolved total phosphorus, some results were below the reporting limit. In the case of ammonium and nitrite, some results were also below the method detection limit. For subsequent graphical and statistical analyses, values below the method detection limit were set to zero, and values between the method detection limit and the reporting limit were set to the instrument-reported value for a given sample (Table 3).

Constituent	Reporting Limit (mg/L)	Method Detection Limit (mg/L)
Ammonium	0.5	0.19
Nitrate	0.1	0.02
Nitrite	0.1	0.007
Dissolved total phosphorus	0.2	0.07
(phosphate)		

Table 3. Reporting limits and method detection limits for discrete water sample water-quality constituents with some low measured values.

Phytoplankton Density and Biovolume

Similar to the description for discrete water-quality samples above, one phytoplankton sample was collected per station visited on a given day, plus one field duplicate per day, for a total of 50 samples. Whole-water samples for phytoplankton identification and enumeration were collected in brown high-density polyethylene (HDPE) bottles and preserved with acid Lugol's solution, a solution of iodine and potassium iodide, at a rate of 5 mL per 250 mL water sample.

Samples of phytoplankton were stored in a cool dry location at the Regional San Environmental Laboratory prior to being shipped overnight to BSA Environmental Services, Inc., at their facility in Beachwood, Ohio, for enumeration.

Phytoplankton samples were filtered onto a 0.2 µm polycarbonate membrane (Nuclepore) and enumerated using a Leica DMLB compound microscope according to McNabb (1960) as described in Beaver et al. (2013). At least 400 natural units (colonies, filaments, and unicells) were enumerated to the lowest possible taxonomic level from each sample. The abundance of common taxa was estimated by random field counts. Rare taxa were quantified by scanning a transect of the filter. In the case of rare, large taxa, half of the filter was scanned and counted at a lower magnification. Cell volumes (biovolumes) were estimated by applying the geometric shapes that most closely matched the cell shape (Hillebrand et al. 1999). Biovolume calculations were based on measurements of 10 organisms per taxon for each sample where possible.

Phytoplankton raw data are presented in Appendix 6.

Picocyanobacteria Density and Biovolume

Picocyanobacteria methods are presented separately from methods for phytoplankton because picocyanobacteria were enumerated using epifluoresence microscopy, whereas phytoplankton were enumerated using inverted microscopy. Because different enumeration techniques were used, the size distributions of picocyanobacteria and phytoplankton may overlap, and their biovolumes cannot be summed to get an overall total. Therefore, results for phytoplankton and picocyanobacteria are also presented separately in the Results section of this report.

Similar to the description for discrete water-quality samples above, one picocyanobacteria sample was collected per station visited on a given day, plus one field duplicate per day, for a total of 50 samples. Each 50 mL whole-water sample was preserved with glutaraldehyde (1 mL 50% glutaraldehyde addition per 25 mL water sample) and stored refrigerated.

Samples of picocyanobacteria were stored in a cool dry location at the Regional San Environmental Laboratory prior to being shipped overnight to BSA Environmental Services, Inc., at their facility in Beachwood, Ohio, for enumeration.

Picocyanobacteria (typically < 2 μ m) biovolume was estimated using epifluorescence microscopy. Preserved samples were filtered onto 0.2 μ m polycarbonate membranes (Nuclepore), enumerated, and sized using an epifluorescence microscope. Following analyses, samples were stored at BSA Environmental Services, Inc., pending the acceptance of the final SRiNCS report by the Delta Regional Monitoring Program.

Picocyanobacteria raw data are presented in Appendix 7.

Phytoplankton Productivity

Determinations of carbon (C) uptake by phytoplankton were quantified using the stable isotope tracer ¹³C-bicarbonate, at each of 14 stations on 9/10/19–9/12/19. Whole-water samples were collected using an acid-cleaned plastic bucket that had been rinsed three times with ambient river water before being filled. Water was poured from the bucket into acid-cleaned 250 mL polycarbonate square bottles (Nalgene) after each bottle was rinsed three times. A set of three bottles for each station received ¹³C-bicarbonate. Isotopes were added at trace levels (approximately 10% of ambient concentrations). After the bottles were spiked with tracer they were placed into a flow-through incubator on deck and shaded with multiple layers of darkened neutral density netting (top and sides) to 40% of surface irradiance. Uptake incubations were terminated after 4 hours via vacuum filtration of 125–250 mL water onto

combusted 25 mm Whatman GF/F. Following filtration, samples were placed in sterile 2 mL Eppendorf micro-centrifuge tubes and dried in a drying oven at 50°C overnight. After drying, samples were stored in a desiccator until processed for mass spectrometric analysis at the University of California Davis Stable Isotope Facility. These incubations produced three replicate measurements of atom percent excess of the POC per station, which was used together with the atom percent enrichment of the dissolved pool to calculate specific uptake rates of carbon (V(1/h) = Atom % excess / Atom % enrichment x time) according to Glibert and Capone (1993).

Zooplankton Biomass

At each of 14 stations on each day from 9/10/19–9/12/19, we collected one vertical haul zooplankton sample with a 0.5-m diameter, 50-µm mesh, 3:1 Wisconsin-style zooplankton net. In addition, one field duplicate was collected per day, in a different channel each day, for a total of 42 zooplankton samples and three field duplicates. Samples were transferred from the cod end to a 250 mL brown HDPE bottle after rinsing the net three times, and preserved with 1% Lugol's solution, a solution of iodine and potassium iodide (12.5 mL Lugol's per 250 mL water sample). Samples were stored in a cool dry location at the Regional San Environmental Laboratory prior to being shipped overnight to BSA Environmental Services, Inc., at their facility in Beachwood, Ohio. Enumerations of the 45 zooplankton samples were conducted by BSA Environmental Services, Inc., describing species where possible, abundance, and biomass. Zooplankton samples were analyzed using the Utermöhl technique with a minimum tally of 200 organisms (Utermöhl 1958). Dry weight biomass estimates were based on length:width relationships that were applied following methods described in Beaver et al. (2013). Following analyses, zooplankton samples were stored at BSA Environmental Services, Inc., pending the acceptance of the final SRiNCS report by the Delta Regional Monitoring Program.

Zooplankton raw data are presented in Appendix 8.

Zooplankton Growth

We conducted a pilot experiment to determine growth rate of the copepod *Eurytemora carolleeae* in water from the study area. This experiment was planned and conducted because we expected to find few copepods in the site water and had considered using a cultured test organism to assess the quality and quantity of the food available to support growth. This species, formerly common in the estuary but now less so, is easier to culture than *Pseudodiaptomus forbesi* which is more common during September. Although the results showed good growth over three days, we decided to use *P. forbesi* for measuring growth during the main experiment.

Because of crew limitations, we focused all our sampling effort on the North Fork Mokelumne River and South Fork Mokelumne River (Figure 1). We conducted 27 discrete sampling events that included zooplankton abundance, stage distribution, egg production rate, and growth rates. Samples for growth rates were collected at two of the four stations in each of the North Fork Mokelumne and South Fork Mokelumne Rivers.

Zooplankton abundance was sampled with a 50-cm diameter, 53-µm mesh net equipped with a flowmeter, towed below the surface for 3 minutes, then we analyzed the samples at the Estuary and Ocean Science (EOS) Center, San Francisco State University. Subsamples were taken with a Stempel pipet to obtain at least 400 organisms and examined under a dissecting microscope. Organisms were

identified to the lowest practicable taxonomic level and counted. Count data were converted to abundance (per m³) using the sample fraction and the filtered volume determined from the flowmeter.

Twelve growth-rate experiments were completed at two sample stations in each of the North Fork Mokelumne and South Fork Mokelumne Rivers (Figure 1) using a method modified from the Artificial Cohort method (Kimmerer and McKinnon 1987). Experiments were not done in Georgiana Slough because we had only two people from the EOS Center working on the study. One modification of the original method was to use image analysis to estimate volumes of individual copepods, which were converted to carbon content using a previously determined calibration (Kimmerer et al. 2018, Owens et al. 2019).

A further modification of the growth-rate method was necessary because *P. forbesi* was not always abundant in the water of the two distributaries. Because the objective for these experiments was to assess the effect of changes in nutrition on copepods rather than to determine ambient growth rates, we conducted these measurements as bioassays. Copepods were collected during short trips to the San Joaquin River just south of the point where Georgiana Slough meets the combined forks of the Mokelumne River (Figure 1). These copepods were transferred to insulated buckets of water from the study sites for transport to the EOS Center.

The growth-rate incubations were conducted at the EOS Center, where replicate containers of copepods were incubated at constant temperature for a total of 48 hours. At 0, 24, and 48 hours, the contents of four replicate containers were poured through a nylon sieve and concentrated into vials with glutaraldehyde as preservative. Samples were subsequently analyzed for volume and carbon per copepod was calculated. Growth rate was determined as the slope of the natural log of median carbon per copepod (Kimmerer et al. 2018). In all 12 experiments the slope did not differ when the 48-hour time point was eliminated, indicating that growth had been constant for the entire period.

We also collected and analyzed samples for molecular identification of foods consumed by the zooplankton. We collected zooplankton and particulate matter at the growth-rate stations and froze them for later analysis using High-Throughput Sequencing (Holmes 2018, Kimmerer et al. 2018).

Clam Biomass and Grazing

Clams were collected at the 17 sample stations over 9/24/19–9/25/19. Clam sampling was performed separately from the main project sampling, due to time constraints, but soon enough after the main project sampling to reduce the likelihood of clam movements or population biomass changes due to growth or mortality. We sampled clams from the river bottom using a custom-built, 35-cm wide trawling dredge. We used this sampling method because clams commonly live in patchy distributions. The clam trawling dredge covers a larger surface area of the river bottom (approximately 9 m²), compared to a Ponar scoop sampler, which helps to reduce sample variation. At each location, three transects were sampled parallel to the riverbanks, with transects spaced equally across the river's width, in midchannel, channel-left, and channel-right. The trawl was deployed from the side of the boat while the boat was stationary in the water. The trawl had a rope connected to a buoy on the basket end and a rope connected to the boat on the inlet end. After the boat moved about 10 m into the river's current, the trawl was tied off to a cleat at the rear of the boat and dragged behind the boat for roughly 1 minute at a speed of approximately 1.8 km/h. Distance traveled was estimated from boat speed and time

traveled and verified by recording starting and ending GPS locations. Time of day, average water depth, and field notes were also recorded.

Clams > 5 mm were collected in a wire mesh basket at the back end of the dredge, which allowed finer particles to pass through. At the end of each transect, the clam dredge was lifted to the side of the boat and gently agitated to release fine particles. The clam dredge was then moved into the boat and its contents were emptied into a plastic sorting tub (Figure 9). All clams and other material were removed from the dredge before the subsequent transect pull started. All other material was returned to the river, and the trawl was visually inspected by two researchers to ensure that there were no remaining clams.

All living clams from each transect, including those attached to the trawl's rake, were placed into a labeled mesh storage bag and held on ice in coolers until the end of each sampling day, then transported to the laboratory prior to fixation in buffered 10% formalin in labeled glass containers that evening. After roughly two weeks, the clams were transferred into 70% ethanol for long-term preservation and stored at room temperature.

Clam shell widths were measured with electric calipers to provide raw data to estimate clam biomass and clam grazing rates. Turnover of water by clams (CT, 1/d) was based on Lopez et al. (2006) and was calculated using the following steps. First, pumping rate (PR, m³/g clam/d) was calculated as a function of temperature (T), based on laboratory experiments:

$$PR = (0.4307e^{0.1113 \times T}) \times 24 \times 0.001$$

Next, daily clam filtration rate (FR, m/d) was calculated as the product of the clam ash-free dry weight (CDW, g/m^2) and PR:

$$FR = CDW \times PR$$

Then CT was calculated from the ratio of FR to river depth (H, m):

$$CT = FR / H$$

Figure 9. Tim Mussen (Regional San) with clams collected from Georgiana Slough.

Quality Assurance/Quality Control Procedures

All data collection, laboratory analyses, flow modeling, and data management, archiving and preservation adhered to the methods and Quality Assurance/Quality Control procedures developed for the project and described in detail in the Delta Regional Monitoring Program Quality Assurance Project Plan, version 5 (Yee et al. 2019). The Quality Assurance Project Plan provides a comprehensive account of the project's procedures, including project tasks, quality objectives and criteria, special training and certifications, documentation and records, sampling process design, sample collection methods, sample handling and custody, analytical methods, quality control, instrumentation (testing, inspection, maintenance, calibration), field supplies, data management (review, verification, validation), assessment and response actions, and reporting.

The Regional San Environmental Laboratory is certified by the California Environmental Laboratory Accreditation Program. Data quality objectives for this project measured both completeness and correctness. An acceptable completeness goal for this project was 90% completeness and included both collection and transport of sample and the laboratory analysis completeness. Completeness was assessed based on the number of samples successfully obtained and validated for use in this study and the proportion of quality-control samples that were within acceptance criteria. Correctness included using the appropriate analytical method, sampling technique, preservation, and all the required quality assurance for the type of analysis performed. Data quality objectives for accuracy, precision, recovery, and contamination were determined through a combination of instrument calibration and the analysis of duplicates, blanks, and spikes. Accuracy, precision, and recovery were assessed through the use of quality control samples by the laboratories. Laboratory spikes and matrix spikes were used to assess accuracy and recovery, and duplicates are used to assess precision. All of the sampling and analysis performed for this project complied with the appropriate laboratory- or method-required quality control. If an analysis was not in compliance with these established method criteria, the lab would have notified the program manager.

Statistical Analyses

For each constituent (i.e., water quality, phytoplankton, and zooplankton constituents), we tested for differences among means across the three sampling dates (9/10/19, 9/11/19, and 9/12/19), and across the three side channels (Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River) with 2-factor analysis of variance (ANOVA), using the ANOVA function in SYSTAT 13 (Zar 1984, SYSTAT 2017). Data from the four sample stations in each channel were pooled. Regarding the statistical assumption of independent observations, we did not correct for repeated sampling at the same sample locations throughout multiple days because the water transport rates and tidal fluxes were such that we were not sampling the same parcels of water on different days (see Appendix 2). We checked the statistical assumptions of normal distribution of residuals using quantile-quantile residual plots, and of homogeneity of variances using residual plots (residuals versus predicted values). All pairwise comparisons were made using a Tukey test, using the post hoc POOLED TUKEY function in SYSTAT (Zar 1984, SYSTAT 2017). Secchi depth was not analyzed because of missing data, and the phytoplankton divisions Euglenophyta and Pyrrophyta were not analyzed because they were present at very few dates and sample stations. For each constituent related to phytoplankton productivity (i.e., carbon uptake, δ^{13} C-POC, and POC), we tested for differences among means by date (9/10/19, 9/11/19, 9/12/19) and by channel (SREM, Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River, MOKEM) with 2-factor ANOVA, using the aov() function in R (R Development Core Team 2014).

Results

Water Flow and Transport Modeling

The complete RMA flow and transport final report (RMA Modeling of Sacramento River Nutrient Change Study) is included in this report as Appendix 2. Here we summarize the major findings of the flow and transport report and their implications for the interpretation of the other data collected during the SRiNCS.

The final flow simulation from the RMA2 model (calibrated and with an updated grid developed for this project) was used for the RMA11 transport model volumetric simulations. The RMA11 model was calibrated using specific conductance data. Specific conductance varied among the water sources to our study area (Sacramento River, Mokelumne River, and Regional San effluent) and behaved like a conservative tracer. The RMA11 transport model was used to estimate the proportions of each water source represented at different locations and times along the three channels: Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River. Particle tracking simulations were conducted to estimate the times by which water with or without effluent from Regional San would have reached a particular sample station during the experiment.

There were four main insights that emerged from this work. First, the proportions of water from the different sources varied among the channels. Sacramento River water, and thus Regional San wastewater inputs, reached all three channels. During the experiment, Sacramento River water comprised approximately 99% of the flow in Georgiana Slough, 96% in the North Fork Mokelumne River, and 80% in the South Fork Mokelumne River (Appendix 2, Figures 32–34). On 9/10/19, Regional San effluent comprised approximately 0.8% of the flow in Georgiana Slough and the North Fork Mokelumne

River, and 0.6% of the flow in the South Fork Mokelumne River, dropping to 0% on 9/11/19. Meanwhile, Mokelumne River inputs affected the South Fork Mokelumne River, but had very little effect on the North Fork Mokelumne River (less than 1%), and no effect on Georgiana Slough (Appendix 2, Figures 36 and 49).

Second, the tidal flux shifted the water in each channel back and forth, and in the case of the South Fork Mokelumne River, caused the input to alternate between Sacramento River water (which included Regional San effluent depending on the phase of our experiment) and Mokelumne River water (Appendix 2, Figures 51 and 52). The tidal flux also appeared to pull water into and out of the three side sloughs (Hog, Beaver and Sycamore Sloughs, Figure 1) on the east side of the South Fork Mokelumne River. This resulted in the South Fork Mokelumne River containing somewhat discrete parcels of water from different sources. Therefore, the influence of Sacramento River water and Regional San wastewater was dampened in the South Fork Mokelumne River in comparison with the other two channels (Appendix 2, Figure 22).

Third, the river flow rates in the Sacramento River and channels were faster than we anticipated when we designed the experiment. This precluded us from using a Lagrangian sampling design in which we would have floated slowly downriver with the advancing WW+ parcel, sampling alternately between WW+ and WW- parcels (see Kraus et al. 2017a). Instead, the transport model showed that entire study area (i.e., the three channels) was under the influence of wastewater on 9/9/19 (see Appendix 2, Figures 37–42). According to the model, the WW- water reached the more northerly stations in the channels late on 9/10/19 (after we had completed our sampling) (see Appendix 2, Table 1). On 9/11/19, there was a transition period when WW- water reached the more southern stations by the end of the day. On 9/12/19, all stations started out in the WW- state. By late that afternoon the resumption of discharge from SRWTP caused WW+ water to again begin reaching the stations, but this occurred after we had completed our station.

Fourth, there was a level of uncertainty about the transport times predicted by the model. Tides affected the movement of the water within each channel, affected the inputs of Mokelumne River water to the South Fork Mokelumne River (as noted above), and likely pulsed water in and out of the three side sloughs along the South Fork Mokelumne River, but the model couldn't resolve this potential pulsed water phenomenon exactly, mainly due to the lack of data from the two field calibration flow stations that washed out in 2017. Based on calibration data collected during the USGS high-resolution boat mapping cruises and from the cross-river transects collected by one of the discrete water sample boat crews, the modelers knew that their model was off by less than an hour to several hours, but that the model predictions were still accurate at the scale of days.

These combined insights from the flow and transport modeling indicate that the 3-day experimental design was robust to tidal fluctuations and the exact location of a given parcel of water, since the majority of the water in the study area on a given day was in the same condition, either WW+ or WW-. Instead of comparing changes from one station to the next along each channel, we were able to group the data from all 12 stations by day (9/10/19, 9/11/19, 9/12/19).

Based on the results of the RMA flow and transport analyses, we were concerned that our response variables (e.g., water quality, phytoplankton abundance, and productivity) could be affected by inputs from the Mokelumne River that could dilute inflow from the Sacramento River to the extent that chemical and biological responses would be substantially dampened. As a result, otherwise detectable

changes in the ecosystem, correlated with the decrease in effluent loading, would become undetectable. However, as will be seen below in the remainder of the Results section, there were substantial changes in the values of many water-quality variables, even when data from the four South Fork Mokelumne River sample stations were pooled with the data from the four sample stations in each of Georgiana Slough and the North Fork Mokelumne River (n=12 total). There were also substantial changes in several phytoplankton abundance and productivity variables.

River Depth Analysis

The full RMA depth analysis report (River Depth Analysis in Support of the Sacramento River Nutrient Change Study) and bathymetric maps for our study area are included in this report as Appendix 3. Here we summarize information from the depth histograms that RMA developed based on the bathymetry data.

Overall, the initial assumptions we made regarding the relative depths of the different channels while designing the experiment were confirmed by the detailed bathymetry data obtained by RMA. As noted in the Introduction, the Sacramento River in our study area had a mean depth of 6.74 m (at Mean Sea Level). In comparison, the mean depth of Georgiana Slough was 5.63 m, the mean depth of the North Fork Mokelumne River was 5.93 m, and the mean depth of the South Fork Mokelumne River was 3.34 m. Depths varied with the tidal cycle, as described below.

The portion of our study area within the Sacramento River was predominantly 7–8 m deep (median depth interval of 7–8 m was 20% of surface area), although this increased to 8–9 m deep at Mean Higher High Water. The maximum depth interval was 18–19 m at Mean Higher High Water (Table 4).

The portion of our study area within Georgiana Slough was predominantly 6–7 m deep (median depth interval was 29% of surface area). This decreased to 5–6 m deep at Mean Lower Low Water. The maximum depth interval was 15–16 m at Mean Higher High Water (Table 4).

The portion of our study area within the North Fork Mokelumne River was predominantly 6–7 m deep (median depth interval was 15% of surface area). This increased to 7–8 m deep at Mean Higher High Water. The maximum depth interval was 13–14 m at Mean Higher High Water (Table 4).

The portion of our study area within the South Fork Mokelumne River was predominantly 3–4 m deep (median depth interval was 23% of surface area). This increased to 4–5 m deep at Mean Higher High Water. The maximum depth interval was 12–13 m at Mean Higher High Water (Table 4).

The depth histograms (not shown) for the Sacramento River and Georgiana Slough were somewhat parabolic, that is, they appeared to follow a somewhat normal distribution. Depth distributions in the North Fork Mokelumne and South Fork Mokelumne Rivers were more skewed. The North Fork Mokelumne River had a higher proportion of its surface area with depths greater than the median depth than did the other channels (Table 4). Conversely, the South Fork Mokelumne River had a higher proportion of its surface area.

Sacramento River Nutrient Change Study – Final Report

Table 4. Summary of depth distributions in the four channels in the study area. Data are drawn from the depth analysis report prepared by RMA (River Depth Analysis in Support of the Sacramento River Nutrient Change Study, included in this report as Appendix 3.

Channel	Maximum depth interval at Mean Higher High Water (m)	Median depth interval at Mean Sea Level (m)	Proportion of surface area below median depth interval at Mean Sea Level (%)	Proportion of surface area at median depth interval at Mean Sea Level (%)	Proportion of surface area above median depth interval at Mean Sea Level (%)
Sacramento River	18–19	7–8	49	20	31
Georgiana Slough	15–16	6–7	53	29	17
North Fork Mokelumne River	13–14	6–7	50	15	34
South Fork Mokelumne River	12–13	3–4	43	23	34

Correlation of RMA Modeled Water Fractions with Discrete Water Sample Water-Quality Characteristics and Constituents

We assessed the relationship between RMA flow and transport modeling results and observed discrete water sample water-quality characteristics and constituents. Results of this analysis are given in Table 5 and plotted (including equations) in Appendix 4.

Table 5. Results of linear regression analysis of modeled water fractions (modeled SRWTP effluent fraction, % SRWTP, and modeled Mokelumne River fraction, % MOK) and water-quality parameters. Regressions associated with p-values less than 0.05 are shown in bold.

	% SRWTP			% MOK		
Characteristic or Constituent	R squared	p-value	Slope	R squared	p-value	Slope
DIC	0.0005	0.900	+	0.6471	0.000	_
DOC	0.0228	0.379	+	0.3666	0.000	_
Chl-a	0.0232	0.376	_	0.0227	0.380	+
Dissolved nitrogen	0.6537	<0.001	+	0.2196	0.004	_
Dissolved TKN	0.4939	0.000	+	0.2310	0.003	_
DON, calculated	0.0004	0.914	—	0.2568	0.002	_
Nitrate	0.7687	0.000	+	0.0772	0.101	_
Nitrite	0.2956	0.001	+	0.0048	0.689	_
Ammonium	0.8659	0.000	+	0.0485	0.197	_
Dissolved total phosphorus	0.0689	0.122	+	0.1167	0.041	+
Silica	0.0098	0.566	+	0.7496	0.000	_
Turbidity	0.2242	0.004	+	0.0510	0.186	_

Dissolved nitrogen, dissolved TKN, nitrate, nitrite, ammonium, and turbidity exhibited significant positive correlations to modeled SRWTP effluent fraction, whereas DIC, DOC, dissolved nitrogen, dissolved TKN, calculated DON, and silica exhibited significant negative correlations with modeled Mokelumne River fraction (Table 5). Dissolved total phosphorus exhibited a significant positive correlation with modeled Mokelumne River fraction. These results could be used to assess RMA model performance along the steep spatial and temporal gradients of this study and to understand the observed effects of source inputs on water-quality characteristics and constituents. The influence of SRWTP effluent on constituents found in high concentrations in this source (i.e., dissolved nitrogen and ammonium) as well as constituents not found in high concentrations in this source but instead produced from SRWTP effluent substrate by biogeochemical processes (i.e. nitrate), are apparent in the regression analysis results. The Mokelumne River water diluted the effluent and affected several water-quality characteristics and constituents, particularly in the South Fork Mokelumne River samples.

High-Resolution Water-Quality Monitoring and Mapping

The results from the USGS high-resolution boat mapping cruises conducted on 9/10/19–9/12/19 clearly show the fluctuations in ammonium and nitrate concentrations during the changes in wastewater loading (Figure 10). By midday on 9/10/19 (WW+ day), there were lower ammonium concentrations in the Sacramento River downstream of the treatment plant discharge point but still high concentrations of ammonium in the Sacramento River near Walnut Grove and in the three channels. Ammonium concentrations in the South Fork Mokelumne River were lower than in the other two channels. On 9/11/19 (WW-) and 9/12/19 (WW-), concentrations of ammonium in the channels were near zero, but on 9/12/19, ammonium concentrations in the main-stem Sacramento increased downstream of the treatment plant discharge location as the 48-hour EVR diversion ended early on 9/12/19. Nitrate concentrations were higher in the channels than in the main-stem Sacramento River on 9/10/19. Nitrate appeared to linger in the South Fork Mokelumne River. On 9/12/19, but low concentrations were observed near the input of the Mokelumne River. On 9/12/19, nitrate concentrations in the main-stem Sacramento River on 10/19. Nitrate appeared River increased again after the EVR diversion ended, with increased concentration toward Walnut Grove (presumably due to nitrification of effluent ammonium).

The patterns observed for DIN and DOC from 9/10/19–9/12/19 (Figure 11) were very similar to the patterns observed for nitrate, although the pattern for DOC was weaker.

Specific conductance in each of the three channels showed a slight decline between 9/10/19 (WW+) and 9/11/19 (WW-) (Figure 12). However, the greatest contrast in specific conductance occurred in the South Fork Mokelumne River near the input from the Mokelumne River, particularly on 9/11/19, but this was also apparent on 9/10/19.

The value of fCHL was less than 10 μ g/L throughout the study area and study period (Figure 12), and fCHL was generally lowest in Georgiana Slough and highest in the South Fork Mokelumne River, with intermediate values in the main-stem Sacramento River and the North Fork Mokelumne River. Within the North Fork Mokelumne River but not the other channels, fCHL declined from 9/10/19–9/11/19, then stayed the same on 9/12/19. Some higher fCHL values occurred in the upstream segment of the Sacramento River on 9/12/19, but this increase began upstream of the treatment plant discharge point.

Chlorophyll fluorescence attributed to diatoms was slightly higher in the North Fork Mokelumne River than in the other two channels on 9/10/19 (Figure 13). However, on 9/11/19 and 9/12/19, fluorescence

was slightly lower in the North Fork Mokelumne River than in the other two channels. Within the North Fork Mokelumne River, but not the other channels, fluorescence attributed to diatoms declined from 9/10/19–9/11/19, then stayed the same on 9/12/19.

Chlorophyll fluorescence attributed to blue-green algae was higher in the South Fork Mokelumne River than in the other two channels on each of 9/10/19, 9/11/19, and 9/12/19 (Figure 13). Fluorescence in each of the three channels and the Sacramento River was slightly lower on 9/12/19 in comparison with 9/10/19.

Chlorophyll fluorescence attributed to Cryptophyta was relatively low throughout the study area and throughout the study period, although somewhat higher values were observed in the southern end of the North Fork Mokelumne River on 9/10/19 (Figure 14).

Chlorophyll fluorescence attributed to green algae was higher in the South Fork Mokelumne River than in the other two channels on 9/10/19, 9/11/19, and 9/12/19 (Figure 14). In the Sacramento River, chlorophyll fluorescence attributed to green algae was higher on 9/12/19 than on 9/10/19, and this difference began upstream of the treatment plant discharge location.

Overall, across the study area, fCHL did not show a clear increase or decrease in association with the decrease in wastewater nutrient loading. Chlorophyll fluorescence attributed to diatoms decreased in association with the decrease in wastewater nutrient loading from 9/10/19 (WW+) to 9/11/19 (WW-), but only in the North Fork Mokelumne River (Figure 13). Chlorophyll fluorescence attributed to blue-green algae showed a slight decrease from 9/10/19 (WW+) to 9/12/19 (two days of WW- conditions) across the study area (Figure 13).

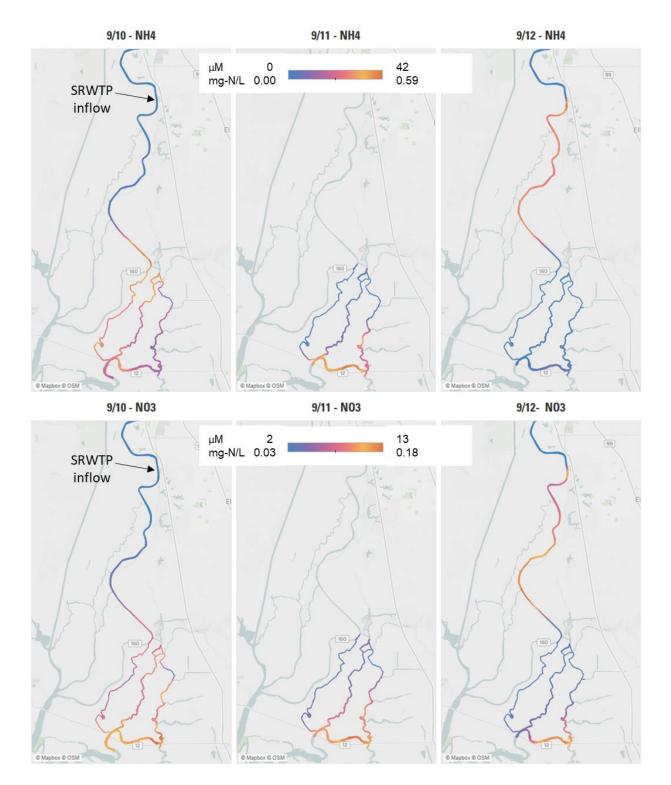


Figure 10. Concentration of ammonium (NH4, top) and of nitrate (NO3, bottom) observed by the USGS high-resolution mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS crew did not sample the Sacramento River on 9/11/19.

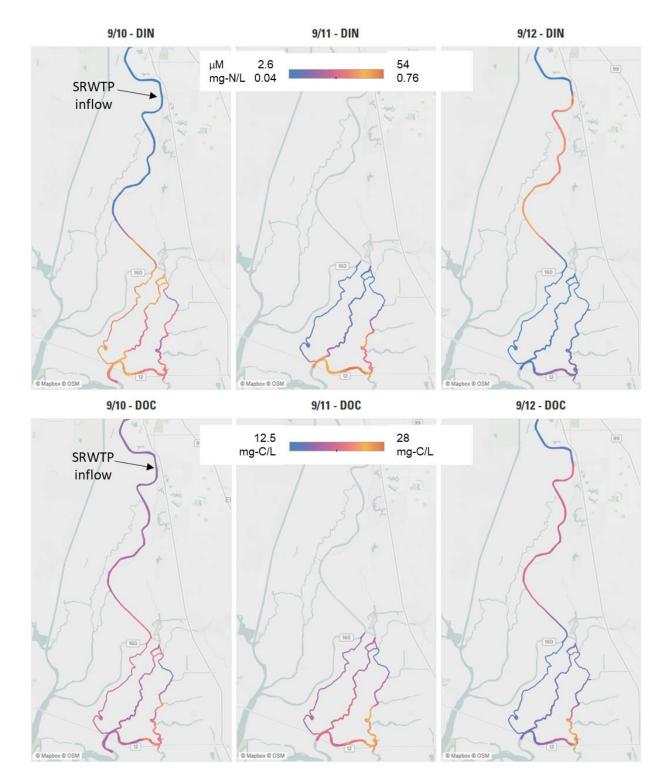


Figure 11. Concentration of DIN (top) and of DOC (bottom) observed by the USGS high-resolution mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS crew did not sample the Sacramento River on 9/11/19.

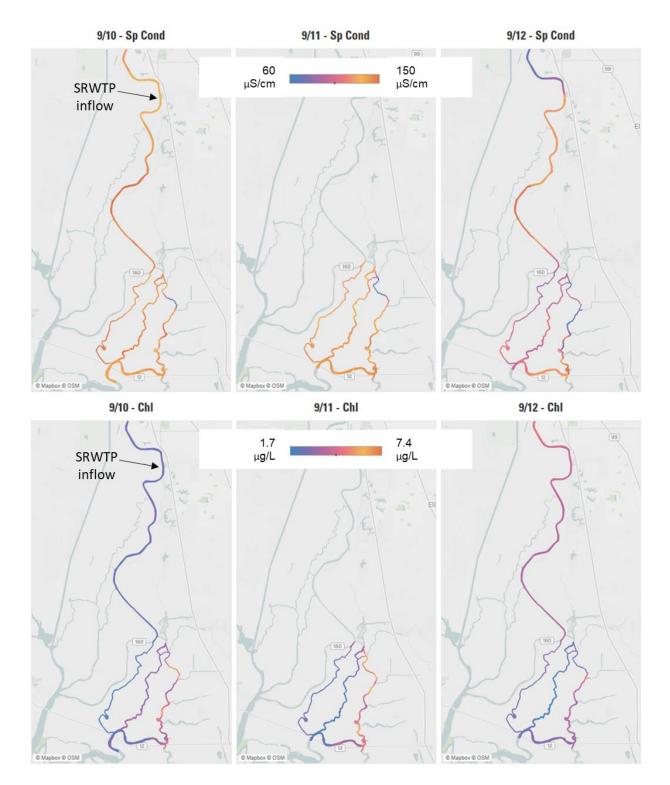


Figure 12. Specific conductance (Sp Cond, top) and concentration of fCHL (Chl, bottom) observed by the USGS high-resolution mapping boat within the study area on 9/10/19–9/12/19. Note that the USGS crew did not sample the Sacramento River on 9/11/19.

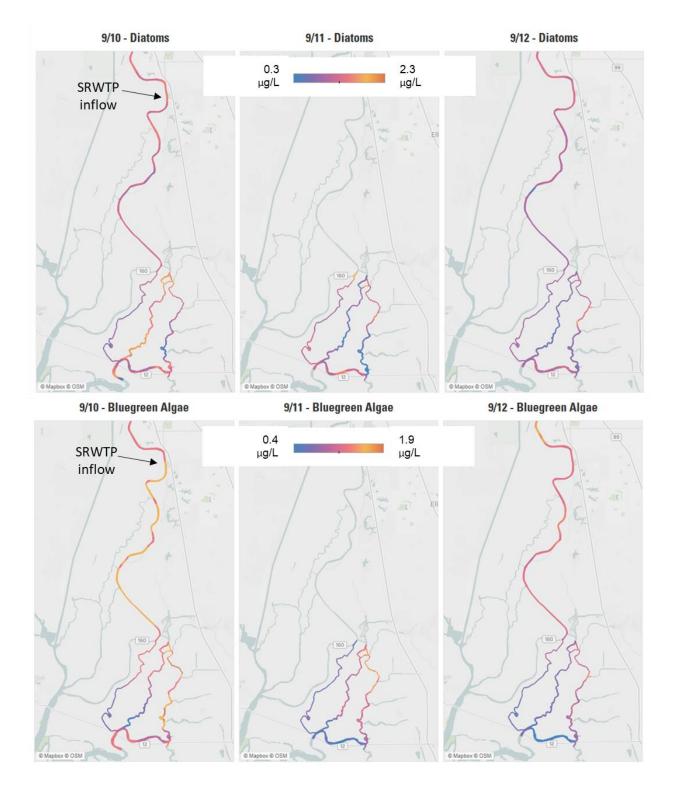


Figure 13. Data generated by the bbe Fluoroprobe during the USGS high-resolution mapping surveys. (TOP) Chlorophyll fluorescence response attributed to diatoms, reported in μ g/L (BOTTOM) Chlorophyll fluorescence response attributed to blue-green algae (Cyanobacteria), reported in μ g/L. Note that the USGS crew did not sample the Sacramento River on 9/11/19.

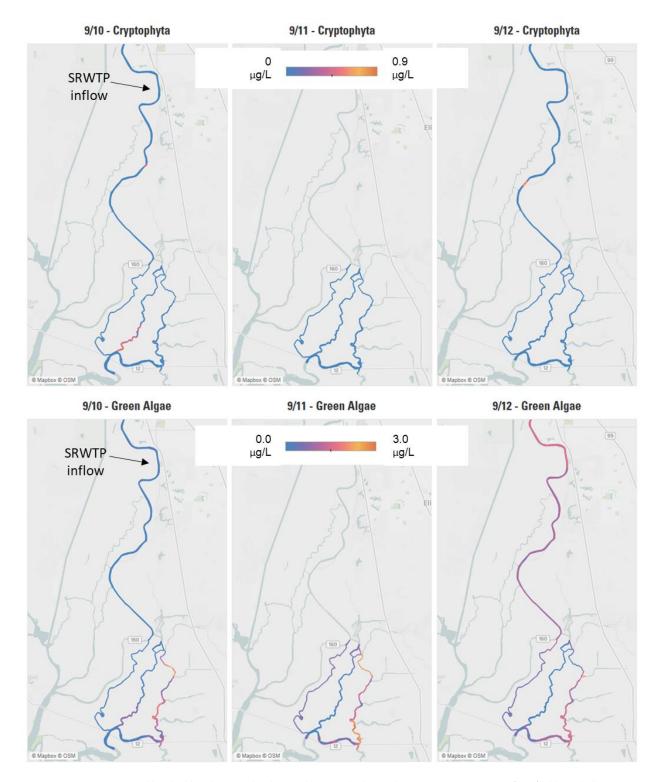


Figure 14. Data generated by the bbe Fluoroprobe during the USGS high-resolution mapping surveys. (TOP) Chlorophyll fluorescence response attributed to Cryptophyta, reported in μ g/L (BOTTOM) Chlorophyll fluorescence response attributed to green algae, reported in μ g/L. Note that the USGS crew did not sample the Sacramento River on 9/11/19.

Water Column Sampling

Our discrete water sample stations ranged in location from 38.153822 to 38.456503 latitude and from - 121.482539 to -121.584361 longitude (Table 6). Note that field data measurements presented below were collected aboard the Guardian, Mudslinger, and TwinVee vessels.

		Station	Station		
Tributary	Station name	abbreviation	number	Latitude	Longitude
Sacramento River	Sacramento River 1	SR1	1	38.456503	-121.502353
	Sacramento River 2	SR2	2	38.434775	-121.522908
	Sacramento River 3	SR3	3	38.368506	-121.5214
	Sacramento River End Member	SREM	4	38.253011	-121.512269
Georgiana Slough	Georgiana Slough 1	GS1	5	38.223233	-121.541328
	Georgiana Slough 2	GS2	6	38.201247	-121.541736
	Georgiana Slough 3	GS3	7	38.182925	-121.568922
	Georgiana Slough 4	GS4	8	38.162442	-121.584361
North Fork Mokelumne River	North Fork Mokelumne River 1	NFM1	9	38.222397	-121.507483
	North Fork Mokelumne River 2	NFM2	10	38.202994	-121.518447
	North Fork Mokelumne River 3	NFM3	11	38.182644	-121.526664
	North Fork Mokelumne River 4	NFM4	12	38.160164	-121.533933
Mokelumne River	Mokelumne River End Member	MOKEM	13	38.230939	-121.490592
South Fork Mokelumne River	South Fork Mokelumne River 1	SFM1	14	38.224786	-121.491506
	South Fork Mokelumne River 2	SFM2	15	38.207314	-121.482539
	South Fork Mokelumne River 3	SFM3	16	38.181264	-121.489256
	South Fork Mokelumne River 4	SFM4	17	38.153822	-121.503183

Table 6. Location and names of discrete water sample stations. Latitude and longitude are in decimal degrees.

Depth

River depths measured from the sampling boats ranged from 2.4-11.0 m, with a mean of 6.5 ± 0.3 m (Standard Error, SE) and median of 6.4 m (Figure 15). Depths measured from the boats corresponded well with the depths indicated by the RMA depth assessment. Depths in the main-stem Sacramento River and in the North Fork Mokelumne River tended to be greater than depths in Georgiana Slough and the South Fork Mokelumne River.

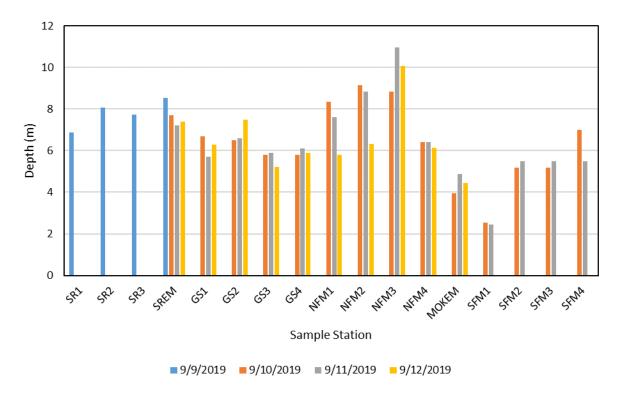


Figure 15. Depth, measured from sample boats, of discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. Note: Missing data at SFM1–SFM4 on 9/12/19.

Secchi Depth

Secchi depth ranged from 1.0–1.9 m, with a mean of 1.4 ± 0.04 m (SE) and median of 1.4 m (Figure 16). Values are missing from the South Fork Mokelumne River stations on 9/12/19.

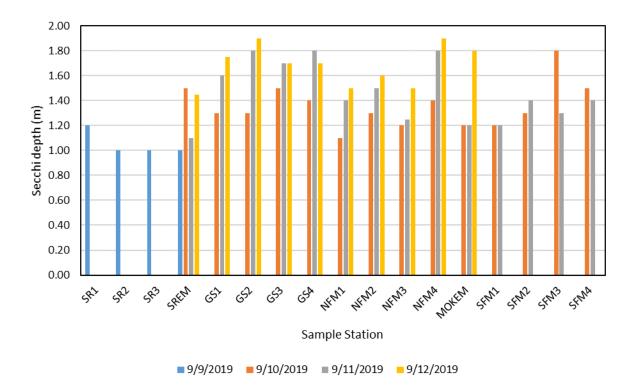



Figure 16. Secchi depth of discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. Note: Missing data at SFM1–SFM4 on 9/12/19.

Turbidity

Turbidity ranged from 2.7–12.0 NTU, with a mean of 5.4 \pm 0.3 NTU (SE) and median of 5.0 NTU (Figure 17). Turbidity values observed in the main-stem Sacramento River on 9/9/19 were greater than values observed at any of the stations on subsequent days.

Using day and channel as factors in a 2-way ANOVA, significant negative differences in turbidity with day were observed (Figure 18, Table 7). Tukey pairwise comparisons indicated the following: 9/10/19 > 9/11/19 (p-value = 0.002); 9/10/19 > 9/12/19 (p-value = 0.000).

Turbidity was also significantly different with channel, with the North Fork Mokelumne River having higher turbidity than the other two channels. Tukey pairwise comparisons: Georgiana Slough < North Fork Mokelumne River (p-value = 0.000); North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.000).

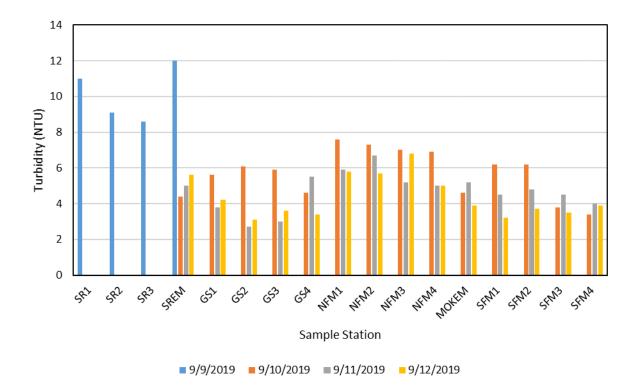


Figure 17. Surface-water turbidity at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

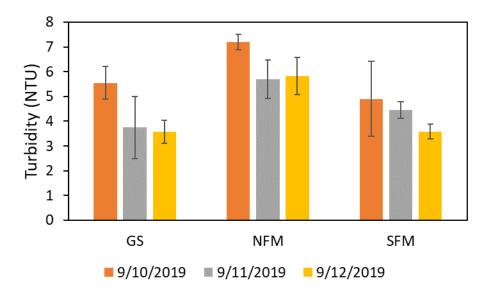


Figure 18. Mean surface water turbidity from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Sacramento River Nutrient Change Study – Final Report

Table 7. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of water quality constituents using day and channel as factors. Significant p-values (< 0.05) in bold. Factor 1, Day = 9/10/19, 9/11/19, 9/12/19 (degrees of freedom, df=2). Factor 2, Channel = Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River (df=2). Residuals df = 27 for all constituents.

Constituent	Day (Factor 1) df=2	Channel (Factor 2) df=2	Interaction (Factor 1 x 2) df=4
Turbidity	1.56E-04	1.6E-04	0.48
	(12.3)	(22.8)	(0.9)
Temperature	0.14	2.49E-09	0.52
	(2.1)	(45.1)	(0.8)
Dissolved oxygen	0.17	1.30E-03	0.14
	(1.9)	(8.6)	(1.9)
Specific conductance	0.60	7.06E-04	0.99
	(0.5)	(9.6)	(0.03)
рН	0.12	7.91E-04	0.04
	(2.3)	(9.4)	(2.9)
Silica	0.63	1.17E-06	0.86
	(0.5)	(23.6)	(0.3)
DIC	0.85	1.33E-03	0.85
	(0.2)	(8.6)	(0.3)
DOC	0.66	2.65E-03	0.25
	(0.4)	(7.5)	(1.4)
Dissolved nitrogen	1.34E-09	3.15E-04	0.04
	(47.8)	(11.0)	(2.9)
Dissolved TKN	1.39E-09	7.09E-06	0.01
	(47.6)	(19.0)	(3.8)
Nitrate	6.34E-07	0.72	0.54
	(25.4)	(0.3)	(0.8)
Nitrite	2.86E-03	0.18	0.37
	(7.3)	(1.8)	(1.1)
Ammonium	2.51E-12	0.14	2.00E-03
	(84.1)	(2.1)	(5.6)
Dissolved total phosphorus	0.08	0.45	0.02
	(2.9)	(0.8)	(3.7)

Temperature

Surface-water temperatures ranged from 19.60–21.53 °C, with a mean of 20.24 \pm 0.09 °C (SE) and median of 19.98 °C (Figure 19). Using day and channel as factors in a 2-way ANOVA, temperature was significantly different with channel, with the South Fork Mokelumne River having higher temperatures than the other two channels (Figure 20, Table 7). Tukey pairwise comparisons indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.000); North Fork Mokelumne River < South Fork Mokelumne River (p-value = 0.000).

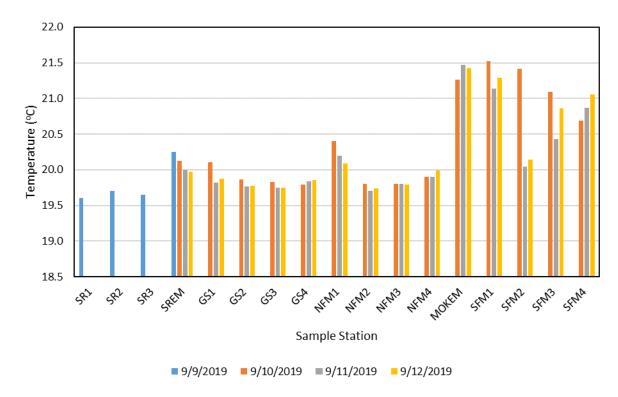


Figure 19. Surface water temperature at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

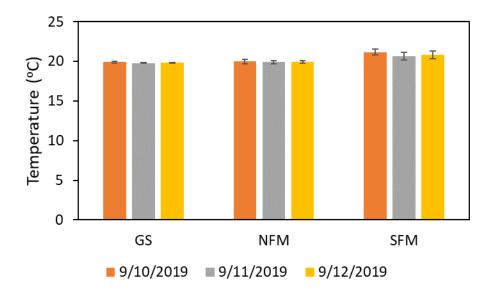


Figure 20. Mean surface water temperature from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Temperature Vertical Profiles

At the SREM and GS stations, there was no evidence of water temperature vertical stratification (Figure 21). Temperatures varied less than 0.5 °C between stations, even though they were sampled at different times of the day, with temperatures being between about 19.7–20.1 °C. Temperature also did not appear to differ between the three days of the study, although the temperature profile data were not analyzed statistically. Temperature profile data from the North Fork Mokelumne River stations are missing due to an issue with the sonde used in that channel. At the MOKEM and SFM stations, there was no evidence of temperature vertical stratification, for stations at which the sonde was allowed to acclimate before being lowered. Of 15 total vertical profiles, eight were very vertical. However, seven showed evidence that the sonde had not been allowed to acclimate, based on a sudden increase in specific conductance readings from 0.1 to over 70 µS/cm in 4 seconds, just as sonde depth began to increase. In particular, on 9/10/19, four out of five vertical profiles showed evidence of "temperature skew" due to the sonde acclimating away from the air temperature toward the water temperature as the sonde was lowered. In spite of this technical issue, temperatures varied less than 2.0 °C among MOKEM and SFM stations, even though they were sampled at different times of the day, with temperatures being between about 20.0–21.7 °C. Despite this wider temperature range, temperatures did not differ among the three days of the study.

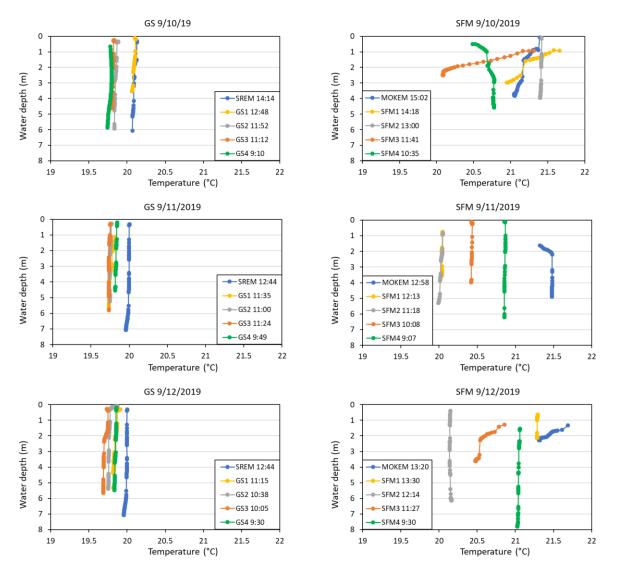
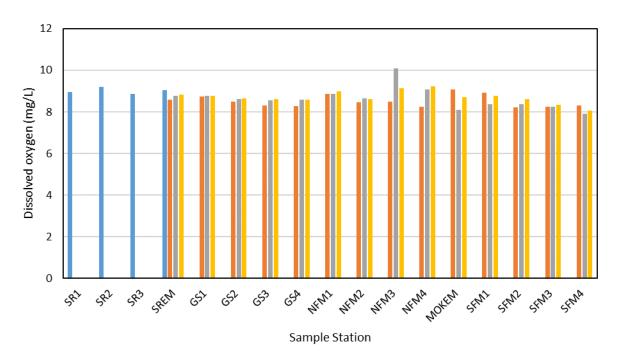




Figure 21. Temperature vertical profiles at the Georgiana Slough stations (GS) and SREM station (left panels), and at the South Fork Mokelumne River stations (SFM) and MOKEM station (right panels), on 9/10/19, 9/11/19, and 9/12/19. Note: Data from the North Fork Mokelumne River are missing.

Dissolved Oxygen

Surface water dissolved-oxygen concentrations ranged from 7.91–10.10 mg/L, with a mean of 8.65 \pm 0.06 mg/L (SE) and median of 8.62 mg/L (Figure 22). Using day and channel as factors in a 2-way ANOVA, surface water dissolved oxygen was significantly different with channel, with the North Fork Mokelumne River having higher temperatures than the South Fork Mokelumne River (Figure 23, Table 7). Tukey pairwise comparison indicated the following: North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.001).

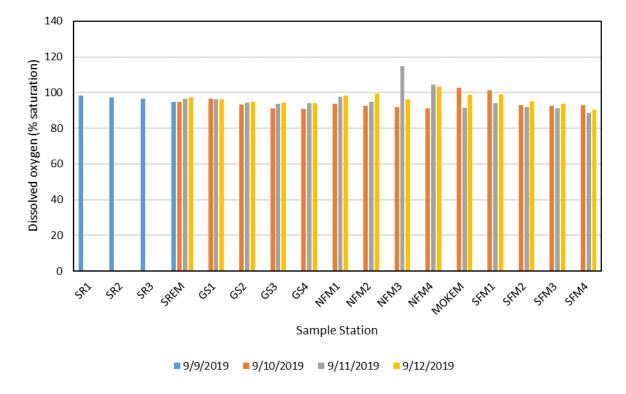


Figure 22. Surface water dissolved oxygen concentration (top) and percent saturation (bottom) at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

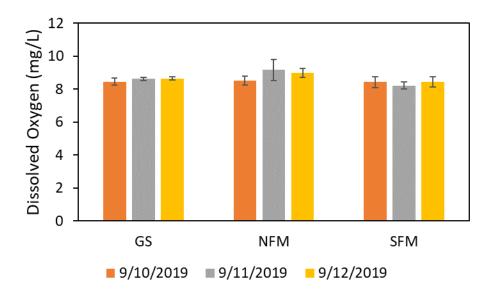


Figure 23. Mean surface water dissolved oxygen from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Specific Conductance

Surface water specific conductance ranged from 40–148 μ S/cm, with a mean of 128 ± 3 μ S/cm (SE) and median of 134 μ S/cm (Figure 24). Using day and channel as factors in a 2-way ANOVA, specific conductance was significantly different with channel, with Georgiana Slough and the North Fork Mokelumne River having higher specific conductance values than the South Fork Mokelumne River (Figure 25, Table 7). Tukey pairwise comparisons indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.001); North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.004).

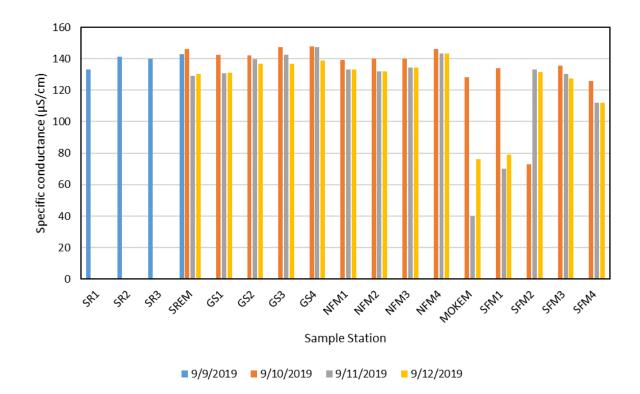


Figure 24. Surface water specific conductance at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

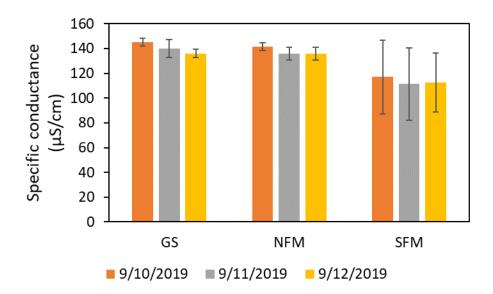


Figure 25. Mean surface water specific conductance from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

рΗ

Surface water pH ranged from 7.25–8.05, with a mean of 7.59 \pm 0.02 (SE) and median of 7.60 (Figure 26). Using day and channel as factors in a 2-way ANOVA, pH was significantly different with channel, and the interaction term was also significant (Figure 27, Table 7). The pH values in the North Fork Mokelumne River were higher than in the South Fork Mokelumne River. Tukey pairwise comparison indicated the following: North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.001).

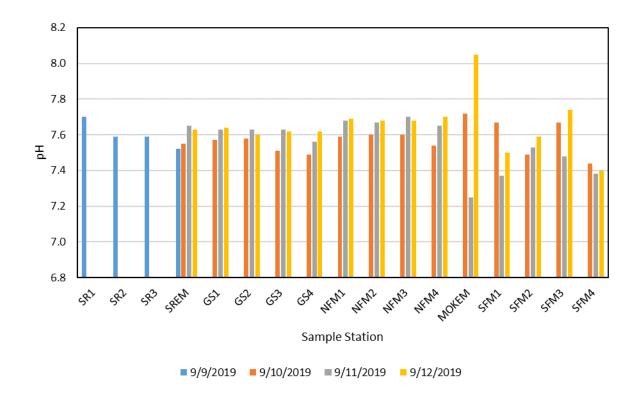


Figure 26. Surface water pH at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

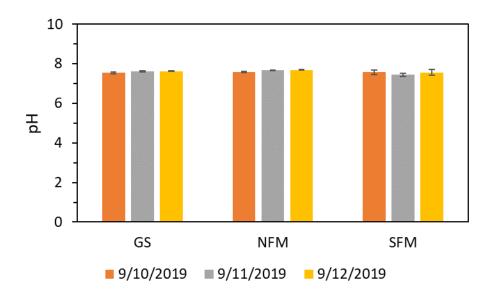


Figure 27. Mean surface water pH from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Surface-Water Quality

Water-quality data are from discrete water samples collected aboard the Guardian, Mudslinger, and TwinVee vessels. The Water-Quality Report of Laboratory Analysis is included as Appendix 5 of this report.

Silica

Surface water silica concentrations ranged from 12–21 mg/L, with a mean of 18 ± 0.3 mg/L (SE) and median of 18 mg/L (Figure 28). Using day and channel as factors in a 2-way ANOVA, surface water silica was significantly different with channel, with Georgiana Slough and the North Fork Mokelumne River having higher silica values than the South Fork Mokelumne River (Figure 29, Table 7). Tukey pairwise comparisons indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.000); North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.000).

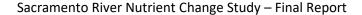


Figure 28. Concentration of silica at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

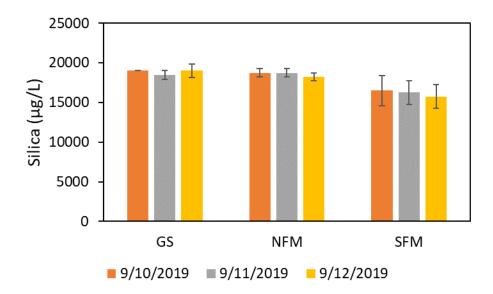
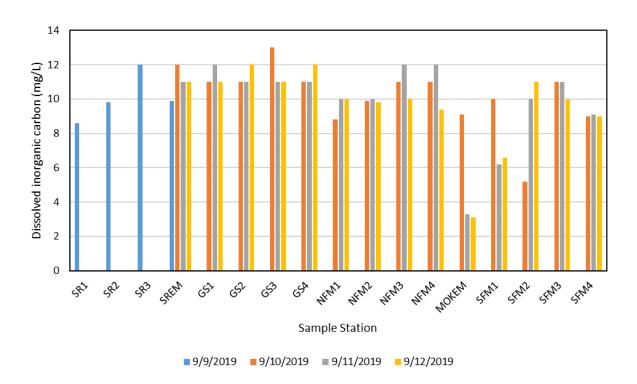


Figure 29. Mean concentration of silica from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Dissolved Inorganic Carbon

Surface water DIC concentrations ranged from 3.1-13.0 mg/L, with a mean of $10.0 \pm 0.3 \text{ mg/L}$ (SE) and median of 10.5 mg/L (Figure 30). Using day and channel as factors in a 2-way ANOVA, DIC was significantly different with channel, with Georgiana Slough having higher DIC values than the South Fork Mokelumne River (Figure 31, Table 7). Tukey pairwise comparison indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.001).



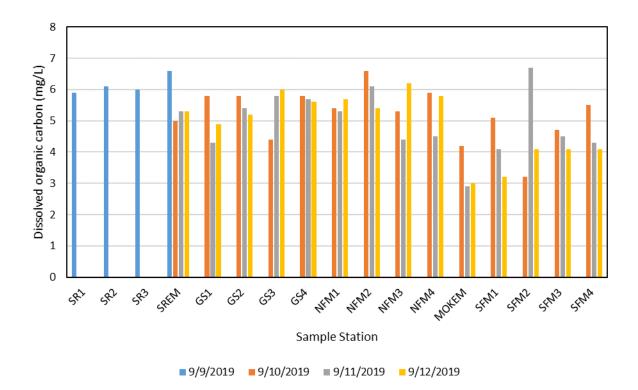

Figure 30. Concentration of DIC at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

Figure 31. Mean concentration of DIC from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Dissolved Organic Carbon

Surface water DOC concentrations ranged from 2.9–6.7 mg/L, with a mean of 5.1 ± 0.1 mg/L (SE) and median of 5.3 mg/L (Figure 32). Using day and channel as factors in a 2-way ANOVA, surface water DOC was significantly different with channel, with Georgiana Slough and the North Fork Mokelumne River having higher DOC values than the South Fork Mokelumne River (Figure 33, Table 7). Tukey pairwise comparisons indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.014); North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.004).

Sacramento River Nutrient Change Study – Final Report

Figure 32. Concentration of DOC at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

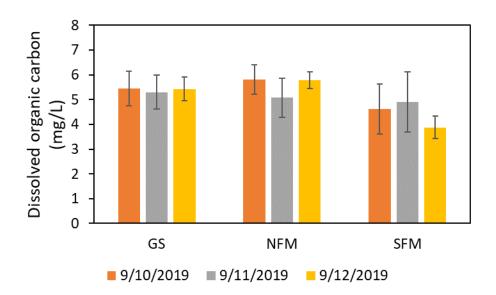


Figure 33. Mean concentration of DOC from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Dissolved Nitrogen as N

Surface water dissolved nitrogen as N concentrations ranged from 0.13–0.63 mg/L, with a mean of 0.34 \pm 0.02 mg/L (SE) and median of 0.30 mg/L (Figure 34). Using day and channel as factors in a 2-way ANOVA, dissolved nitrogen as N was significantly different with day and channel, and the interaction term was also significant (Figure 35, Table 7).

Significant negative differences in dissolved nitrogen as N with day were observed, with concentrations on 9/10/19 exceeding concentrations on 9/11/19 and 9/12/19. Tukey pairwise comparisons indicated the following: 9/10/19 > 9/11/19 (p-value = 0.000); 9/10/19 > 9/12/19 (p-value = 0.000).

Georgiana Slough and the North Fork Mokelumne River had higher dissolved nitrogen as N than the South Fork Mokelumne River. Tukey pairwise comparisons indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.006); North Fork Mokelumne River > South Fork Mokelumne River (p-value = 0.000).

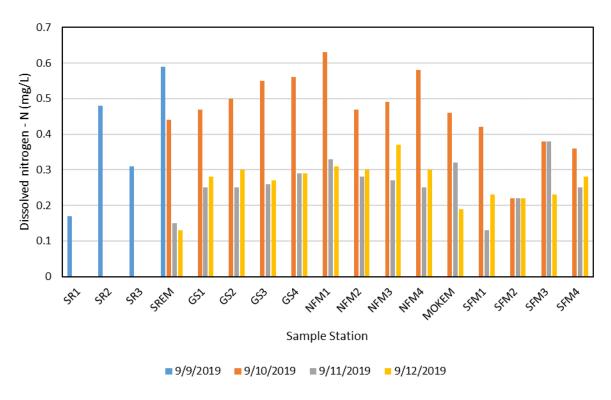
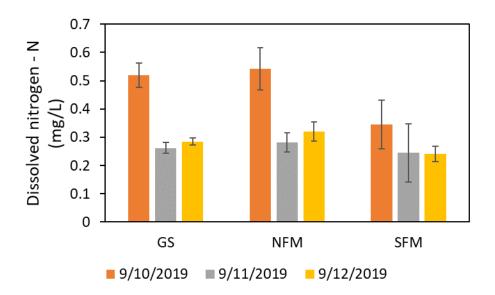
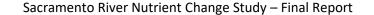


Figure 34. Concentration of dissolved nitrogen as N at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.




Figure 35. Mean concentration of dissolved nitrogen as N from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Dissolved TKN – N

Surface water dissolved TKN-N concentrations ranged from 0.09-0.51 mg/L, with a mean of $0.26 \pm 0.02 \text{ mg/L}$ (SE) and median of 0.25 mg/L (Figure 36). Using day and channel as factors in a 2-way ANOVA, dissolved TKN-N was significantly different with day and channel, and the interaction term was also significant (Figure 37, Table 7).

Significant negative differences in dissolved TKN-N with day were observed, with concentrations on 9/10/19 exceeding concentrations on 9/11/19 and 9/12/19. Tukey pairwise comparisons indicated the following: 9/10/19 > 9/11/19 (p-value = 0.000); 9/10/19 > 9/12/19 (p-value = 0.000).

Georgiana Slough had higher dissolved TKN-N than the South Fork Mokelumne River. Tukey pairwise comparison indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.040).

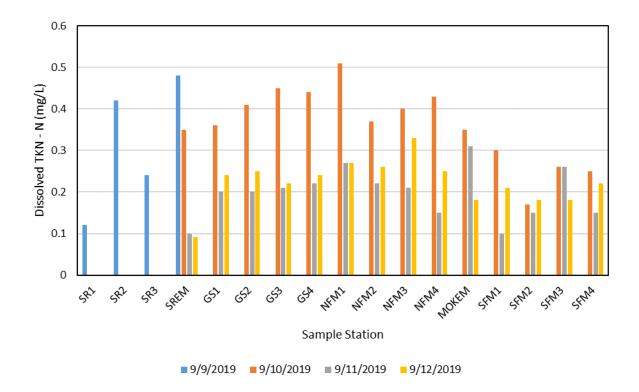


Figure 36. Concentration of dissolved TKN as N at discrete water sample stations, on 9/9/19 - 9/12/19. Station name abbreviations are defined in Table 6.

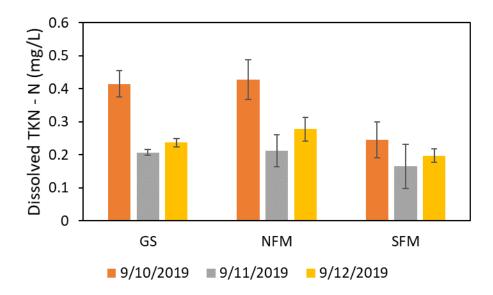


Figure 37. Mean concentration of dissolved TKN as N from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Nitrate – N

Surface water nitrate as N concentrations ranged from 0.010–0.140 mg/L, with a mean of 0.069 \pm 0.005 mg/L (SE) and median of 0.055 mg/L (Figure 38). Using day and channel as factors in a 2-way ANOVA, significant negative differences in nitrate as N with day were observed (Figure 39, Table 7), with concentrations on 9/10/19 exceeding concentrations on 9/11/19 and 9/12/19. Tukey pairwise comparisons indicated the following: 9/10/19 > 9/11/19 (p-value = 0.000); 9/10/19 > 9/12/19 (p-value = 0.000).

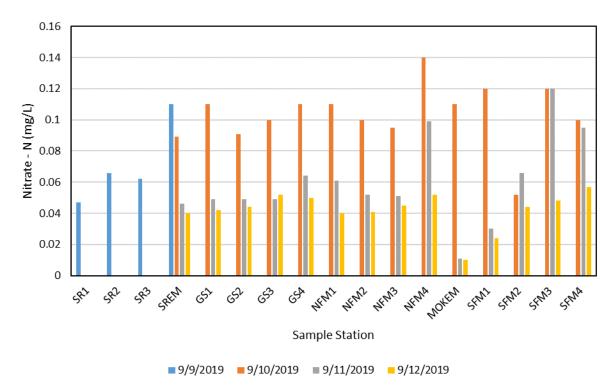


Figure 38. Concentration of nitrate as N at discrete water sample stations, on 9/9/19 - 9/12/19. Station name abbreviations are defined in Table 6.

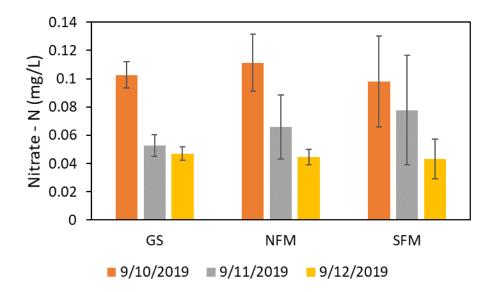


Figure 39. Mean concentration of nitrate as N from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Nitrite – N

Surface water nitrite as N concentrations ranged from 0.0000 (non-detect) – 0.0079 mg/L, with a mean of 0.003 \pm 0.000 mg/L (SE) and median of 0.003 mg/L (Figure 40). Using day and channel as factors in a 2-way ANOVA, significant negative differences in nitrite as N with day were observed (Figure 41, Table 7), with concentrations on 9/10/19 exceeding concentrations on 9/12/19. Tukey pairwise comparison indicated the following: 9/10/19 > 9/12/19 (p-value = 0.002).

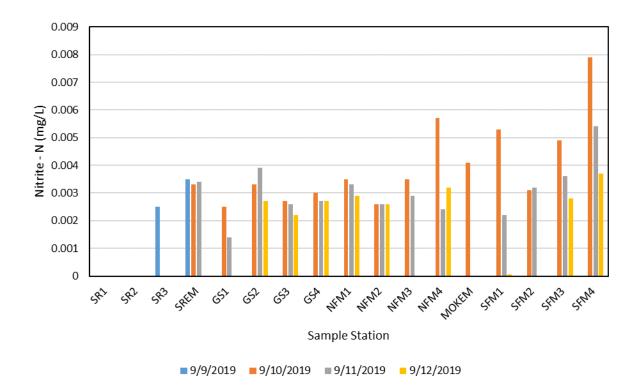


Figure 40. Concentration of nitrite as N at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

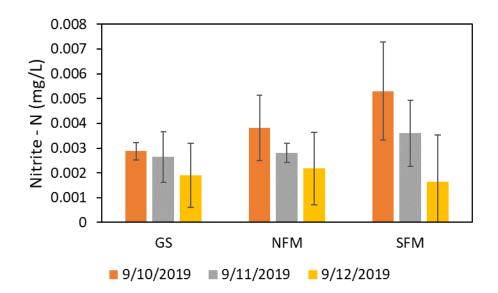


Figure 41. Mean concentration of nitrite as N from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Ammonium – N

Surface water ammonium as N concentrations ranged from 0.000 (non-detect) – 0.270 mg/L, with a mean of 0.064 \pm 0.012 mg/L (SE) and median of 0.014 mg/L (Figure 42). Using day and channel as factors in a 2-way ANOVA, significant negative differences in ammonium as N with day were observed (Figure 43, Table 7), with concentrations on 9/10/19 exceeding concentrations on 9/11/19 and 9/12/19. Tukey pairwise comparisons indicated the following: 9/10/19 > 9/11/19 (p-value = 0.000); 9/10/19 > 9/12/19 (p-value = 0.000).

Figure 42. Concentration of ammonium as N at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

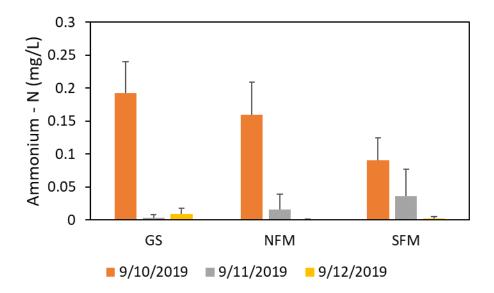


Figure 43. Mean concentration of ammonium as N from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Dissolved Total Phosphorus – P

Surface water dissolved total phosphorus as P concentrations ranged from 0.005–0.220 mg/L, with a mean of 0.052 \pm 0.005 mg/L (SE) and median of 0.044 mg/L (Figure 44). Aside from one particularly high value at SFM1 on 9/11/19, values were below 0.100 mg/L. Using day and channel as factors in a 2-way ANOVA, dissolved total phosphorus as P was not significantly different with day or channel, but the interaction term was significant (Figure 45, Table 7).

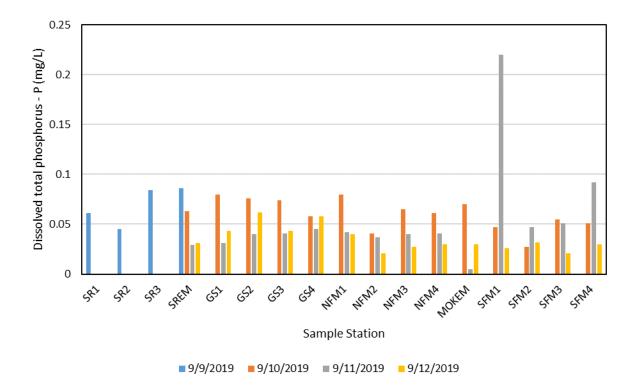


Figure 44. Concentration of dissolved total phosphorus as P at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

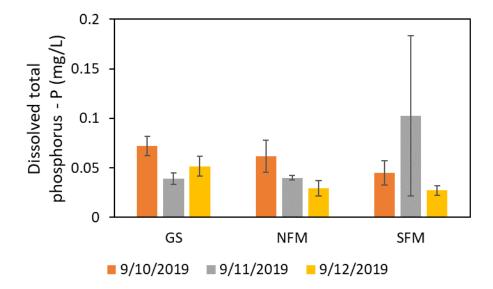
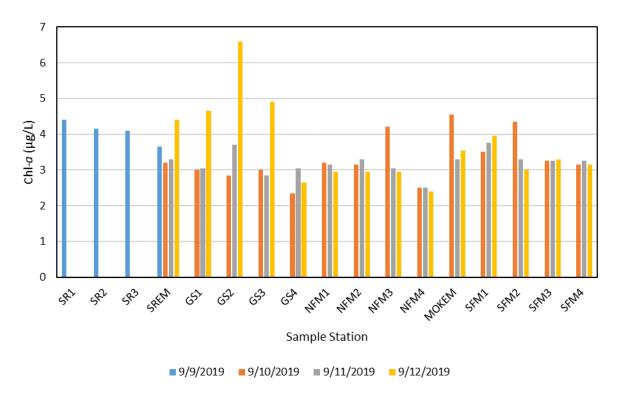



Figure 45. Mean concentration of dissolved total phosphorus as P from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Chl-a

Surface water chl-*a* concentrations ranged from 2.35–6.60 μ g/L (average of two replicates at each station), with a mean of 3.45 ± 0.11 μ g/L (SE) and median of 3.25 μ g/L (Figure 46). Using day and channel as factors in a 2-way ANOVA, chl-*a* was not significantly different with day or channel, but the interaction term was significant (Figure 47, Table 8).

Figure 46. Concentration of chl-a at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6.

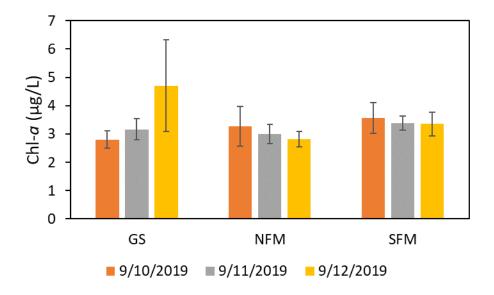


Figure 47. Mean concentration of chl-a from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Sacramento River Nutrient Change Study – Final Report

Table 8. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of chl-a and phytoplankton density and biovolume constituents using day and channel as factors. Significant p-values (< 0.05) in bold. Factor 1, Day = 9/10/19, 9/11/19, 9/12/19 (df=2). Factor 2, Channel = Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River (df=2). Residuals df = 27 for all constituents.

Constituent	Day (Factor 1) df=2	Channel (Factor 2) df=2	Interaction (Factor 1 x 2) df=4
Chl-a	0.22	0.15	0.01
	(1.6)	(2.0)	(4.0)
Total phytoplankton density	7.44E-03	0.46	0.91
	(5.9)	(0.8)	(0.2)
Bacillariophyta density	0.12	0.04	0.63
	(2.3)	(3.7)	(0.6)
Chlorophyta density	0.24	0.66	0.73
	(1.5)	(0.4)	(0.5)
Chrysophyta density	0.35	0.99	0.45
	(1.1)	(0.007)	(1.0)
Cryptophyta density	0.78	0.84	0.58
	(0.3)	(0.2)	(0.7)
Cyanobacteria density	5.01E-03	0.53	0.93
	(6.5)	(0.6)	(0.2)
Total phytoplankton biovolume	0.40	0.20	0.97
	(0.9)	(1.7)	(0.1)
Bacillariophyta biovolume	0.41	0.19	0.97
	(0.9)	(1.8)	(0.1)
Chlorophyta biovolume	0.24	0.66	0.73
	(1.5)	(0.4)	(0.5)
Chrysophyta biovolume	0.35	0.99	0.45
	(1.1)	(0.007)	(1.0)
Cryptophyta biovolume	0.99	0.88	0.79
	(0.02)	(0.1)	(0.4)
Cyanobacteria biovolume	0.06	0.69	0.72
	(3.2)	(0.4)	(0.5)
PC-rich picocyanobacteria	0.73	1.41E-03	0.95
biovolume	(0.3)	(8.5)	(0.2)
PE-rich picocyanobacteria	0.09	0.12	0.40
biovolume	(2.7)	(2.3)	(1.0)

Phytoplankton Density and Biovolume

Phytoplankton raw data are presented in Appendix 6.

Total phytoplankton density ranged from 4,423,190–74,741,417 cells/L, with a mean of 33,982,822 ± 2,364,009 cells/L (SE) and median of 32,587,470 cells/L (Figure 48). Phytoplankton density was dominated by Cyanophyta (cyanobacteria), followed by Chlorophyta and Bacillariophyta, with the other divisions making minimal contributions. Cyanophyta species composition was mainly *Chroococcus* sp., with occasional observations of *Pseudanabaena* sp., *Aphanizomenon* sp., *Planktothrix* sp., *Limnothrix* sp., *Merismopedia* sp., and *Planktolyngbya* sp. One station on one date had *Microcystis* sp. present (SFM3 on 9/12/19).

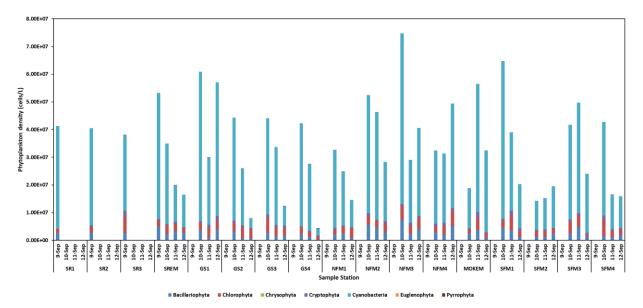


Figure 48. Density of phytoplankton by division at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. On 9/9/2019, samples were only collected at stations SR1–SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/2019–9/12/2019.

Using day and channel as factors in a 2-way ANOVA, significant negative differences in total phytoplankton density with day were observed (Figure 49, Table 8), with densities on 9/10/19 exceeding densities on 9/12/19. Tukey pairwise comparison indicated the following: 9/10/19 > 9/12/19 (p-value = 0.007).

Using the same ANOVA test, Bacillariophyta density was significantly different with channel, with Georgiana Slough having lower Bacillariophyta density than the North Fork Mokelumne River (Figure 50, Table 8). Tukey pairwise comparison indicated the following: Georgiana Slough < North Fork Mokelumne River (p-value = 0.039).

Using the same ANOVA test, no significant differences in the density of Chlorophyta, Chrysophyta, or Cryptophyta were observed (Table 8).

Again, using the same ANOVA test, significant negative differences in Cyanophyta density with day were observed (Figure 51, Table 8), with densities on 9/10/19 exceeding densities on 9/12/19. Tukey pairwise comparison indicated the following: 9/10/19 > 9/12/19 (p-value = 0.004).

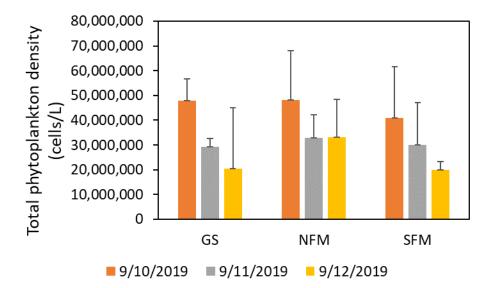


Figure 49. Mean density of total phytoplankton from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

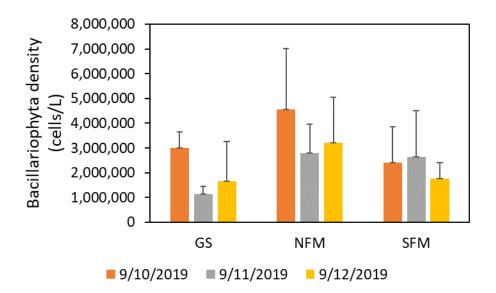


Figure 50. Mean density of Bacillariophyta from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

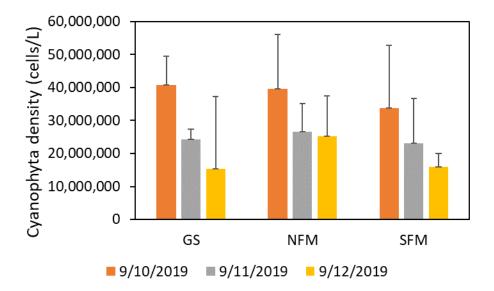


Figure 51. Mean density of Cyanophyta from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Total phytoplankton biovolume ranged from 2.059 E+008–8.418 E+009 μm³/L, with a mean of 1.396 E+009 ± 1.995 E+008 μm³/L (SE) and median of 1.027 E+009 μm³/L (Figure 52). Phytoplankton biovolume was dominated by Bacillariophyta, followed by Cryptophyta, and more distantly by Chlorophyta and Cyanobacteria, with the other divisions making minimal contributions. Using day and channel as factors in a 2-way ANOVA, no significant differences in the biovolume of total phytoplankton, Bacilliarophyta, Chlorophyta, Chlorophyta, Cryptophyta, or Cyanobacteria were observed (Table 8).

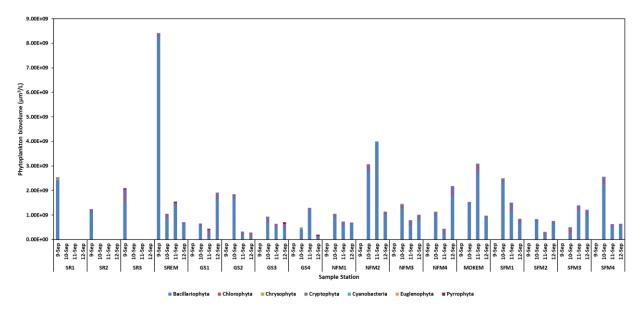


Figure 52. Biovolume of phytoplankton by division at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. On 9/9/19, samples were only collected at stations SR1–SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/19–9/12/19.

Picocyanobacteria Density and Biovolume

Picocyanobacteria raw data are presented in Appendix 7.

Total picocyanobacteria density was variable across stations and sampling dates, showing no clear patterns (Figure 53). PC-rich picocyanobacteria density ranged from 402,124–61,605,397 cells/L, with a mean of 13,237,571 ± 2,319,806 cells/L (SE) and median of 5,901,170 cells/L. PE-rich picocyanobacteria density ranged from 8,217,316–74,594,002 cells/L, with a mean of 21,870,682 ± 1,881,533 cells/L (SE) and median of 17,814,093 cells/L. PC-rich picocyanobacteria generally showed greater density at the MOKEM and South Fork Mokelumne River stations, but PE-rich picocyanobacteria dominated the density at a majority of the remaining stations.

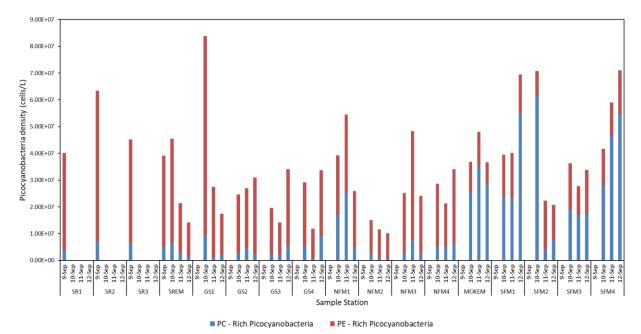
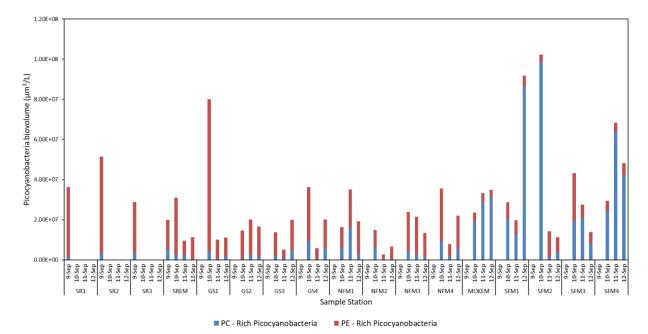



Figure 53. Density of picocyanobacteria at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. On 9/9/2019, samples were only collected at stations SR1 – SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/2019–9/12/2019.

Total picocyanobacteria biovolume was also variable across stations and sampling dates, showing no clear patterns (Figure 54). PC-rich picocyanobacteria biovolume ranged from 267,845–98,337,921 μ m³/L, with a mean of 12,846,476 ± 3,136,025 μ m³/L (SE) and median of 3,986,178 μ m³/L. PE-rich picocyanobacteria biovolume ranged from 2,303,654–76,283,779 μ m³/L, with a mean of 14,366,859 ± 1,949,312 μ m³/L (SE) and median of 10,522,395 μ m³/L. PC-rich picocyanobacteria generally showed more biovolume at the MOKEM and South Fork Mokelumne River stations, but PE-rich picocyanobacteria dominated the biovolume at a majority of the remaining stations. Using day and channel as factors in a 2-way ANOVA, PC-rich picocyanobacteria biovolume was significantly different with channel, with Georgiana Slough and the North Fork Mokelumne River having lower PC-rich picocyanobacteria biovolume than the South Fork Mokelumne River (Figure 55, Table 8). Tukey pairwise comparisons indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.003); North Fork Mokelumne River </p>

Using the same ANOVA test, no significant differences in PE-rich picocyanobacteria biovolume were observed (Table 8).

Figure 54. Biovolume of picocyanobacteria at discrete water sample stations, on 9/9/19–9/12/19. Station name abbreviations are defined in Table 6. On 9/9/19, samples were only collected at stations SR1–SREM. No samples were collected at stations SR1, SR2, or SR3 on 9/10/19–9/12/19.

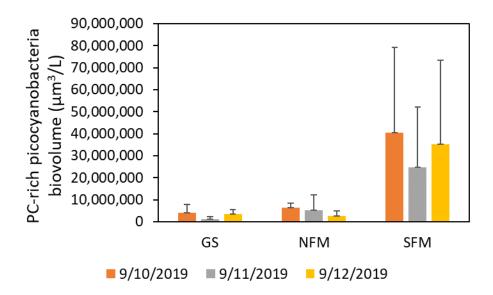


Figure 55. Biovolume of PC-rich picocyanobacteria from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Phytoplankton Productivity

Changes in water column clarity over the course of the three days of sampling corresponded with changes in primary productivity, here represented as carbon uptake measured by ¹³C tracer additions. As evident from Secchi Disk data, an increase of up to 50% in Secchi depth occurred between 9/10/19–9/11/19 (Figure 16). This increase in water column clarity was reflected in a change in light attenuation (K_d) which decreased by 25% between 9/10/19–9/11/19 and remained 25% lower on 9/12/19 (day 3) as illustrated by photosynthetically active radiation measurements in Georgiana Slough (Figure 56A). The decrease in K_d was less in the Sacramento River, on the order of 14% between the first and third days of the experiment, compared with Georgiana Slough (Figure 56A). Corresponding with the decrease in K_d, the euphotic zone depth (Z_{eu}) increased between 9/10/19–9/11/19 (day 1 and 2) in Georgiana Slough and between 9/10/19–9/12/19 (day 1 and 3) in the Sacramento River (Figure 56B), leading to an increase in the time spent in the euphotic zone (T_{eu}). The increase in T_{eu} , the ratio of euphotic zone depth was 6 ± 0.35m, compared with the Sacramento River stations, where the average depth was 8 ± 0.06 m (Figure 56C).

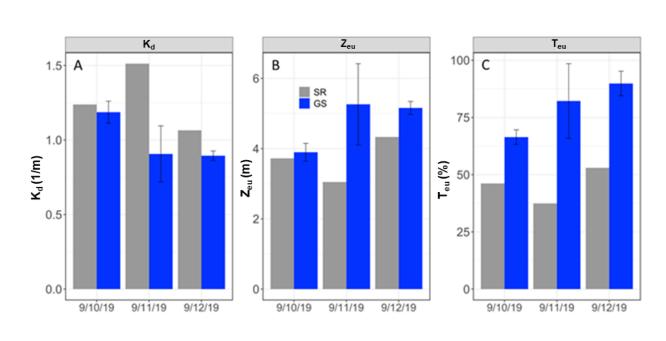


Figure 56. Changes with sampling day in A) light attenuation (K_d), B) euphotic zone depth (Z_{eu}) calculated as 4.6/ K_d , and C) time spent in euphotic zone (T_{eu}), calculated as Z_{eu} : Z_m expressed as a percentage, where Z_m is the mixed layer depth. Gray bars represent mean of four Sacramento River (SR) stations and blue bars represent mean of four Georgiana Slough (GS) stations.

Specific rates of carbon uptake ranged from 0.026–0.059 /h, with a mean of 0.035 /h \pm 0.001 /h (SE) and median of 0.034 /h (Figure 57). Carbon uptake increased with decreased light attenuation, following an acclimation period of one day (Figure 58). Although light attenuation decreased on 9/10/19, carbon uptake did not increase or increased only slightly on 9/10/19 before increasing on 9/12/19 in most of the channels (Figure 58). Carbon uptake was greater at the MOKEM and South Fork Mokelumne River

stations than at other locations, and the increase in carbon uptake was greatest in the Mokelumne River endmember (Figure 58). At the MOKEM station, there was no acclimation period and increases occurred on day 2 relative to day 1, and on day 3 relative to day 2, suggesting that the phytoplankton population at this station may have been acclimated to higher light than the other stations (Figure 58). Drawdown of nitrate was also greater at this station relative to the other stations (Figure 38).

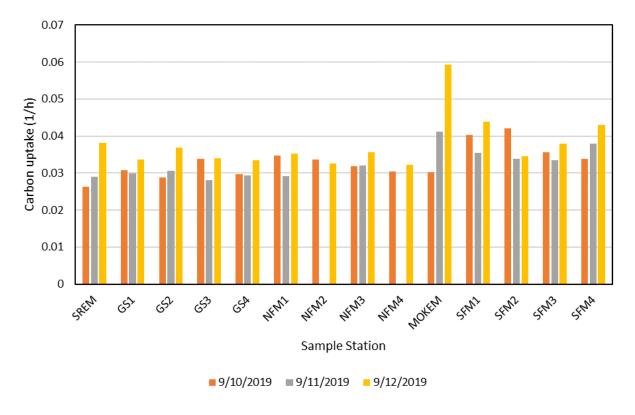
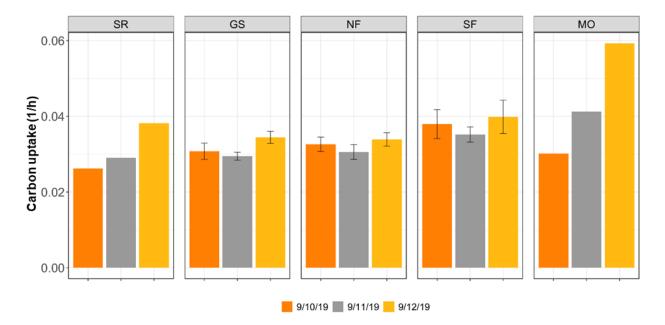
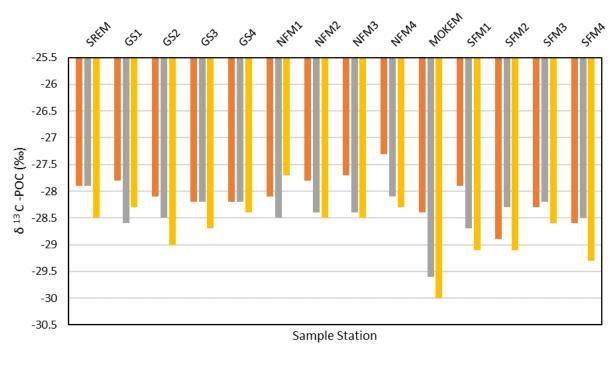
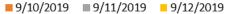
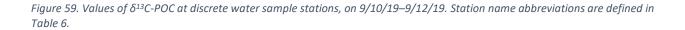


Figure 57. Specific uptake rate of carbon at discrete water sample stations, on 9/10/19–9/12/19. Station name abbreviations are defined in Table 6. Note: Missing data at NFM2 and NFM4 on 9/11/19.




Figure 58. Mean channel-specific carbon uptake (1/h) between 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. The Sacramento River and Mokelumne River were only sampled at a single station. Channel name abbreviations: SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South Fork Mokelumne River, and MO=Mokelumne River.

Fixation of carbon dioxide into organic matter by the enzyme Rubisco tends to lower the δ^{13} C content of particulate matter due to the strong discrimination by the Rubisco enzyme against the ¹³C isotope in favor of the ¹²C isotope (Roeske and O'Leary 1984, Guy et al. 1989). Increased productivity resulting in an increase in Rubisco activity is expected to lead to a decrease in δ^{13} C-POC as long as there is no appreciable depletion of the DIC pool or increase in the δ^{13} C of the DIC. Consistent with increases in carbon uptake, the δ^{13} C content of POC decreased by day over the course of the three-day sampling period (Figure 59, Figure 60). Values of δ^{13} C-POC ranged from -30.00 – -27.30 ‰, with a mean of -28.41 ± 0.08 ‰ (SE) and median of -28.40 ‰ (Figure 59). Values of δ^{13} C-POC tended to be more negative at the MOKEM and South Fork Mokelumne River stations than at other locations, particularly on 9/12/19 relative to the first two days of sampling. The largest decrease in the δ^{13} C-POC occurred in the MOKEM station (Figure 60).

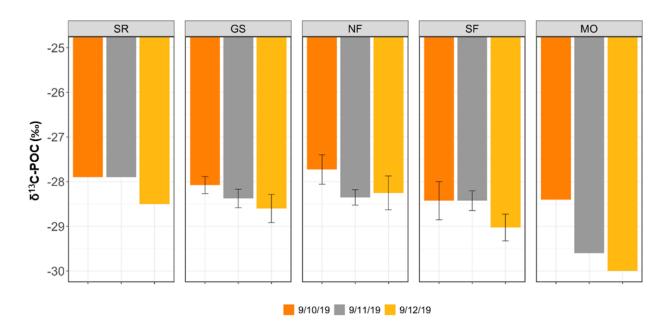
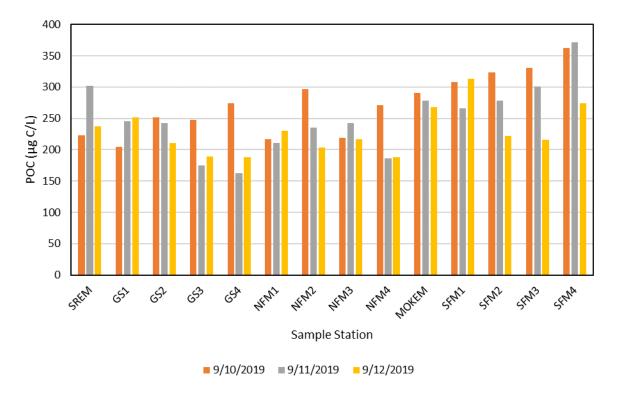



Figure 60. Mean δ^{13} C-POC with day for each channel from 9/10/19–9/12/19. Error bars represent standard deviation of the mean of four sample stations along each channel. The Sacramento River (SR) and Mokelumne River (MO) were only sampled at a single station. Channel name abbreviations: SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South Fork Mokelumne River, and MO=Mokelumne River.

Over the course of the three sampling days, concentrations of POC ranged from $162.8-372.0 \mu g/L$, with a mean of $250.6 \mu g/L \pm 7.7 \mu g/L$ (SE) and median of $244.2 \mu g/L$ (Figure 61). When averaged by slough, it was evident that POC concentrations decreased in all sloughs by the end of the three-day sampling period (Figure 62). This decrease is counterintuitive as POC concentrations would be expected to increase with increased carbon uptake and fixation. However, this may be a matter of timescales with increases in productivity initially leading to a depletion of cellular carbon stores followed by increases in POC as abundance and biomass of phytoplankton increase over time. Decreases in POC over the threeday sampling period were smallest in the Mokelumne River endmember compared with the other sites potentially suggesting that phytoplankton cells were more acclimated to changing irradiance conditions than the other sites.

Figure 61. Concentration of POC at discrete water sample stations, on 9/10/19–9/12/19. Station name abbreviations are defined in Table 6.

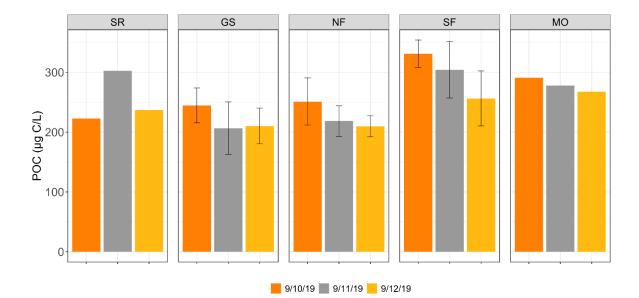


Figure 62. Mean POC concentration with day for each channel from 9/10/19–9/12/19. Error bars represent standard deviation of the mean of four sample stations along each channel. The Sacramento River and Mokelumne River were only sampled at a single station. Channel name abbreviations: SR=Sacramento River, GS=Georgiana Slough, NF=North Fork Mokelumne River, SF=South Fork Mokelumne River, and MO=Mokelumne River.

The changes in water clarity with day of the SRiNCS likely confounded the changes in ammonium concentrations with the EVR hold. To tease apart the impact of changes in irradiance (as measured by changes in light attenuation or Secchi disk depth) from changes in ammonium concentrations would not be easy when both differed by day. Because photosynthetically active radiation and Secchi disk depth were not measured in all channels, it was not possible to measure how differently irradiance changes were manifested in the channels, although the difference between Georgiana Slough and the Sacramento River would somewhat capture this variation (i.e., Figure 59). However, light attenuation could be calculated from turbidity measurements and used as a factor in statistical analyses. Using the approach of examining day and channel as factors in a 2-way ANOVA, where positive changes with day could be indicative of the impact of irradiance, significant positive differences in carbon uptake and δ^{13} C-POC with day were observed (Table 9). Significant differences in carbon uptake and δ^{13} C-POC with channel were also observed (Table 9).

Sacramento River Nutrient Change Study – Final Report

Table 9. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of phytoplankton indices including carbon uptake (1/h), δ 13C-POC (‰), and POC (µg C/L) using day and channel as factors. Significant p-values (< 0.05) in bold. Factor 1, Day = 9/10/19, 9/11/19, 9/12/19 (df=2). Factor 2, Channel = SREM, Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River, MOKEM (df=4).

Index	Day (Factor 1) df=2	Channel (Factor 2) df=4	Interaction (Factor 1 x 2) df=8	Residuals
Carbon uptake	8.15E-06 (19.4)	1.48E-07 (20.3)	8.16E-05 (6.9)	25
δ ¹³ C-POC	2.62E-05 (16.0)	4.84E-06 (13.0)	0.12 (1.8)	27
POC	0.010 (5.4)	6.58E-05 (9.4)	0.49 (0.9)	27

Zooplankton Density and Biomass

Zooplankton raw data are presented in Appendix 8.

Total zooplankton density ranged from 0.403-37.498 individuals/L, with a mean of 5.197 ± 0.976 individuals/L (SE) and median of 3.474 individuals/L (Figure 63). Zooplankton density was dominated by Copepoda, followed by Rotifera, with much smaller contributions (an order of magnitude lower) from the other divisions. Using day and channel as factors in a 2-way ANOVA, total zooplankton density was significantly different with day and channel, and the interaction term was also significant (Figure 64, Table 10). Significant negative differences in total zooplankton density with day were observed, with densities on 9/10/19 exceeding densities on 9/12/19. Tukey pairwise comparison indicated the following: 9/10/19 > 9/12/19 (p-value = 0.042). Georgiana Slough and the North Fork Mokelumne River had lower total zooplankton densities than the South Fork Mokelumne River. Tukey pairwise comparisons indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.012); North Fork Mokelumne River < South Fork Mokelumne River (p-value = 0.031).

Using the same test, no significant differences in Bivalvia density were observed (Table 10).

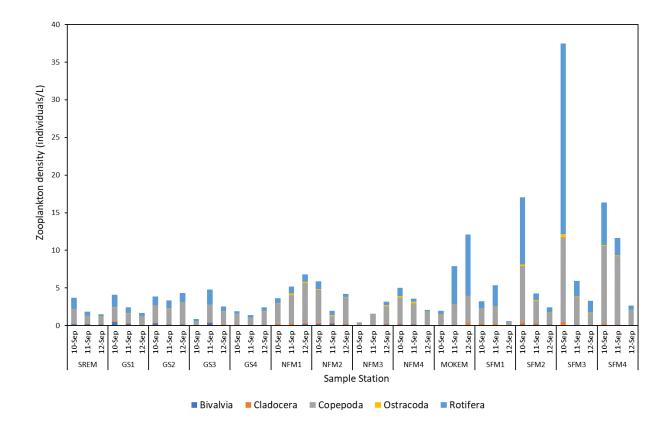


Figure 63. Density of zooplankton by division at discrete water sample stations, on 9/10/19–9/12/19. Station name abbreviations are defined in Table 6.

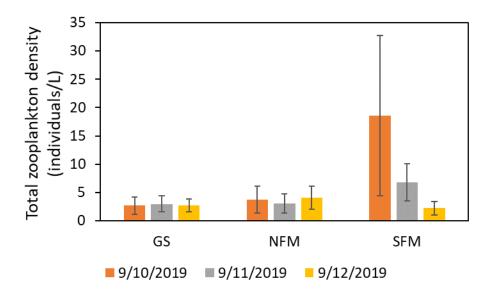


Figure 64. Mean density of total zooplankton from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Sacramento River Nutrient Change Study – Final Report

Table 10. P-values and F-values (in parentheses) resulting from 2-way ANOVAs of zooplankton density and biovolume constituents using day and channel as factors. Significant p-values (< 0.05) in bold. Factor 1, Day = 9/10/19, 9/11/19, 9/12/19 (df=2). Factor 2, Channel = Georgiana Slough, North Fork Mokelumne River, South Fork Mokelumne River (df=2). Residuals df = 27 for all constituents.

Constituent	Day (Factor 1) df=2	Channel (Factor 2) df=4	Interaction (Factor 1 x 2) df=8
Total zooplankton density	0.04	8.92E-03	0.02
	(3.6)	(5.7)	(3.7)
Bivalvia density	0.47	0.10	0.73
	(0.8)	(2.5)	(0.5)
Cladocera density	0.01	3.06E-04	7.60E-04
	(5.3)	(11.1)	(6.6)
Copepoda density	0.09	7.1E-03	0.01
	(2.6)	(6.0)	(3.8)
Ostracoda density	0.48	3.65E-03	0.21
	(0.7)	(7.0)	(1.6)
Rotifera density	0.07	0.03	0.05
	(2.9)	(4.1)	(2.7)
Total zooplankton biomass	0.07	0.01	4.49E-03
	(3.0)	(5.3)	(4.8)
Bivalvia biomass	0.42	4.54E-02	0.77
	(0.9)	(3.5)	(0.5)
Cladocera biomass	0.07	5.65E-04	2.19E-03
	(2.9)	(10.0)	(5.5)
Copepoda biomass	0.42	0.07	0.06
	(0.9)	(3.0)	(2.6)
Ostracoda biomass	0.35	0.17	0.60
	(1.1)	(1.9)	(0.7)
Rotifera biomass	0.20	0.20	0.12
	(1.7)	(1.7)	(2.0)

Using day and channel as factors in a 2-way ANOVA, Cladocera density was significantly different with day and channel, and the interaction term was also significant (Figure 65, Table 10). Significant negative differences in Cladocera density with day were observed, with densities on 9/10/19 exceeding densities on 9/12/19. Tukey pairwise comparison indicated the following: 9/10/19 > 9/12/19 (p-value = 0.009).

Georgiana Slough had lower Cladocera density than the South Fork Mokelumne River. Tukey pairwise comparison indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.000).

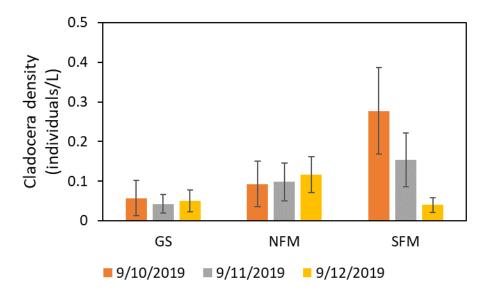


Figure 65. Mean density of Cladocera from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Using day and channel as factors in a 2-way ANOVA, Copepoda density was significantly different with channel, and the interaction term was also significant (Figure 66, Table 10). Georgiana Slough had lower Copepoda density than the South Fork Mokelumne River. Tukey pairwise comparison indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.006).

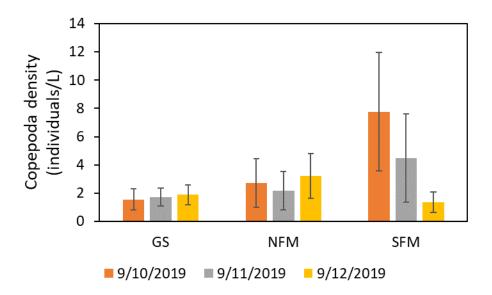


Figure 66. Mean density of Copepoda from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Using day and channel as factors in a 2-way ANOVA, Ostracoda density was significantly different with channel, with Georgiana Slough having lower Ostracoda density than the North Fork Mokelumne River or South Fork Mokelumne River (Figure 67, Table 10). Tukey pairwise comparisons indicated the following: Georgiana Slough < North Fork Mokelumne River (p-value = 0.007); Georgiana Slough < South Fork Mokelumne River (p-value = 0.012).

Using the same test, Rotifera density was significantly different with channel, with the North Fork Mokelumne River having lower Ostracoda density than the South Fork Mokelumne River (Figure 68, Table 10). Tukey pairwise comparison indicated the following: North Fork Mokelumne River < South Fork Mokelumne River (p-value = 0.041).

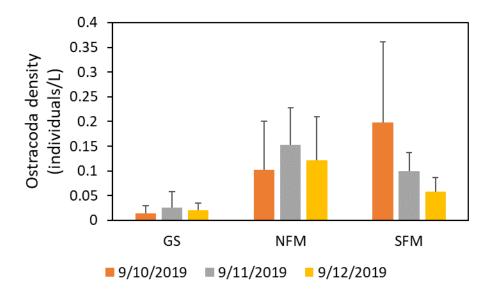


Figure 67. Mean density of Ostracoda from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

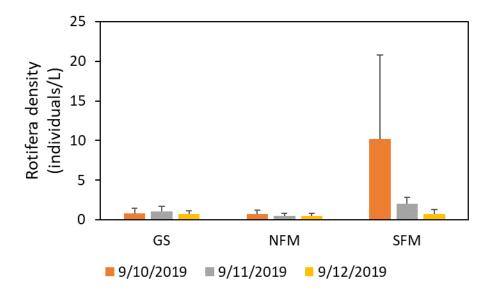


Figure 68. Mean density of Rotifera from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Total zooplankton biomass ranged from $0.042-2.126 \ \mu g \ dry \ weight/L$, with a mean of $0.471 \pm 0.061 \ \mu g \ dry \ weight/L$ (SE) and median of $0.328 \ \mu g \ dry \ weight/L$ (Figure 69). Zooplankton biomass was dominated by Copepoda, followed by Cladocera, and more distantly by Rotifera, Ostracoda, and Bivalvia. Using day and channel as factors in a 2-way ANOVA, total zooplankton biomass was significantly different with channel, and the interaction term was also significant (Figure 70, Table 10). Georgiana Slough had lower

total zooplankton biomass than the South Fork Mokelumne River. Tukey pairwise comparison indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.009).

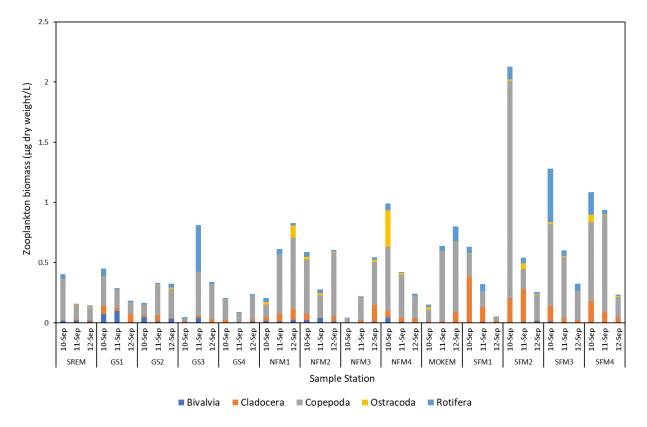


Figure 69. Biomass of zooplankton by division at discrete water sample stations, on 9/10/2019–9/12/2019. Station name abbreviations are defined in Table 6.

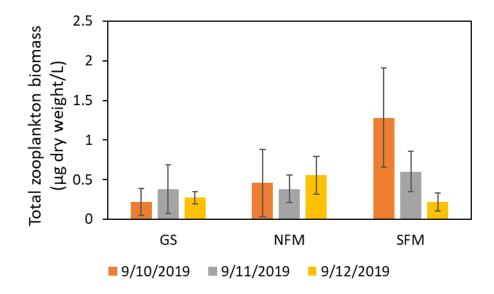


Figure 70. Mean biomass of total zooplankton from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Using day and channel as factors in a 2-way ANOVA, Bivalvia biomass was significantly different with channel, with Georgiana Slough having higher Bivalvia biomass than the South Fork Mokelumne River (Figure 71, Table 10). Tukey pairwise comparison indicated the following: Georgiana Slough > South Fork Mokelumne River (p-value = 0.036).

Using the same ANOVA test, Cladocera biomass was significantly different with channel, and the interaction term was also significant (Figure 72, Table 10). Georgiana Slough and the North Fork Mokelumne River had lower Cladocera biomass than the South Fork Mokelumne River. Tukey pairwise comparisons indicated the following: Georgiana Slough < South Fork Mokelumne River (p-value = 0.001); North Fork Mokelumne River < South Fork Mokelumne River (p-value = 0.006).

Again, using the same ANOVA test, no significant differences in the biomass of Copepoda, Ostracoda, or Rotifera were observed (Table 10).

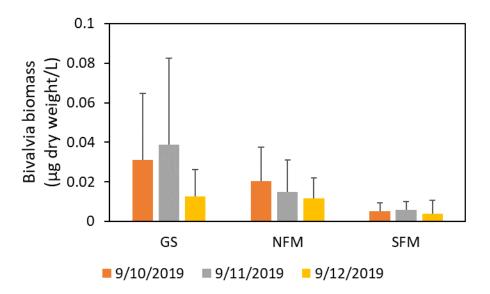


Figure 71. Mean biomass of total zooplankton from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

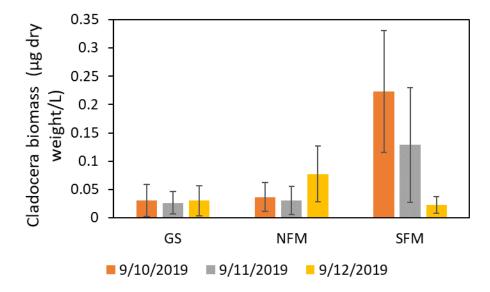


Figure 72. Mean biomass of Cladocera from 9/10/19–9/12/19. Black error bars represent standard deviation of the mean of four sample stations along each channel for each day. Channel name abbreviations: GS=Georgiana Slough, NFM=North Fork Mokelumne River, and SFM=South Fork Mokelumne River.

Zooplankton (P. forbesi) Growth

Figure 73 shows the time course and spatial variation of zooplankton abundance (EOS enumerations) and growth, alongside other key variables used in the zooplankton growth analysis, including ammonium (Figure 73A), chl-*a* concentration (Figure 73B), and phytoplankton biovolume (Figure 73C). Total zooplankton abundance was highly variable within days with no consistent spatial pattern (Figure 73D), although the four highest values were from the southerly stations 3 and 4 in the South Fork of the Mokelumne River (SFM3 and SFM4, respectively). Zooplankton (*P. forbesi*) growth rates were generally low, with the values from 9/11/19 being the highest (Figure 73E).

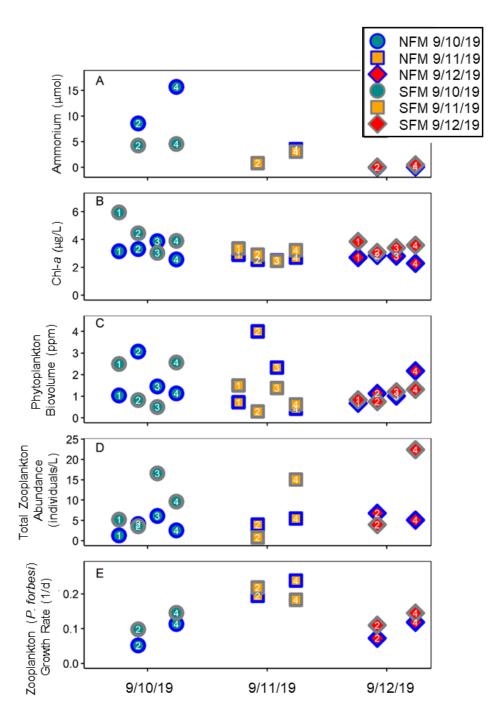
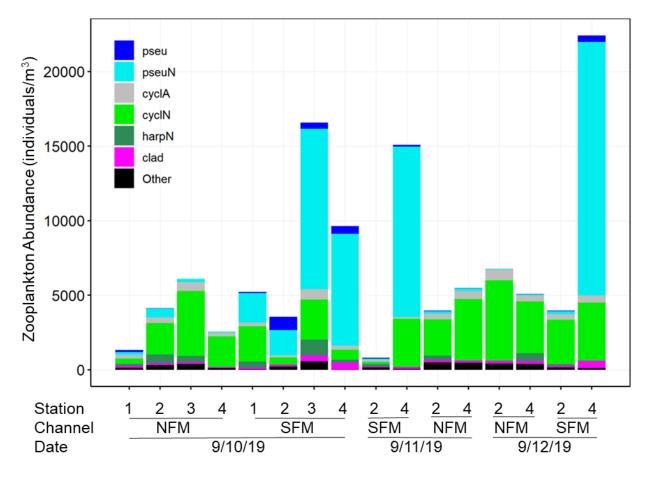



Figure 73. Measured variables by day of sampling with points shifted in x direction to reduce overlap. Symbol shape and fill indicates day of sampling, edge color indicates North Fork Mokelumne River or South Fork Mokelumne River (see legend), and numbers indicate station (Figure 1). A, ammonium concentration (1 μ mol = 0.014 mg/L); B, chl-a concentration; C, phytoplankton biovolume; D, total zooplankton abundance; E, zooplankton (P. forbesi) growth rate. Data have been shifted laterally to avoid overlaps.

Zooplankton abundance was variable and dominated by copepod nauplius larvae (Figure 74). These larvae were either *P. forbesi* or unidentified cyclopoid copepods, probably *Acanthocyclops* and close

relatives. Adult and juvenile copepods were much less abundant than nauplii in most samples. Note that the high zooplankton abundance values from the southerly stations 3 and 4 in the South Fork Mokelumne River (SFM3 and SFM4, respectively) were 65–77% *P. forbesi* nauplii. Figure 75 shows how anomalous these are: the abundance of nauplii at these stations is about 450 times that of adult females.

Figure 74. Zooplankton abundance by major taxonomic groups for each sample. Samples are identified by day in September, North Fork Mokelumne River (NFM) or South Fork Mokelumne River (SFM), and sample station (1–4). Taxa are (top to bottom) copepods including *P. forbesi* adults plus juveniles (pseu), and nauplius larvae (pseuN), cyclopoid copepods including adults plus juveniles (cyclA), and nauplii (cyclN), harpacticoid nauplii (harpN), cladocerans (clad), and Other.

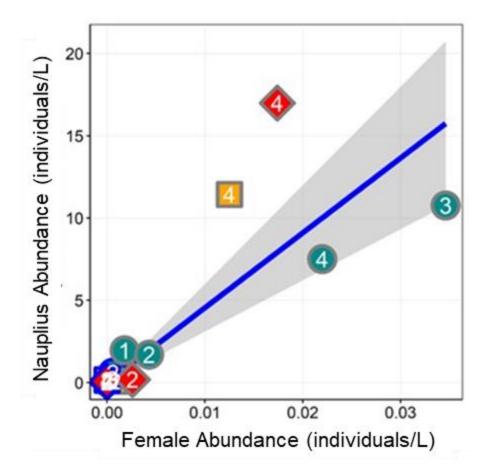


Figure 75. P. forbesi. Abundance of nauplii vs. abundance of adult females. Symbols as in Figure 46. Line with 95% confidence bands is a linear regression line with fixed 0 intercept and a slope of 450 ± 300.

Comparing abundance of common zooplankton taxa between the EOS data and the data generated by BSA Environmental Services, Inc., shows some broad similarities and some differences. Total copepods (Figure 76A) were by far the dominant taxa in both data sets, and abundances were very roughly similar except that estimates of nauplius abundance were much greater in the EOS data in several samples. Abundance of cladocerans (Figure 76B) were generally congruent except for higher values in the EOS Center samples from 9/12/19. Ostracods, by contrast, were almost always more abundant in the BSA Environmental Services, Inc., samples (Figure 76C).

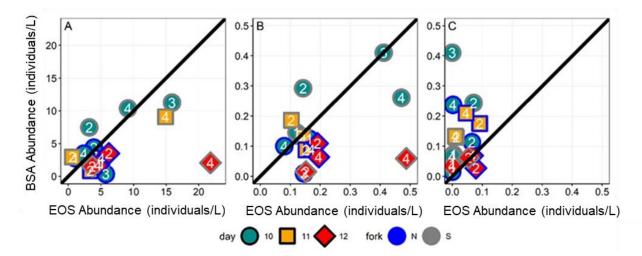
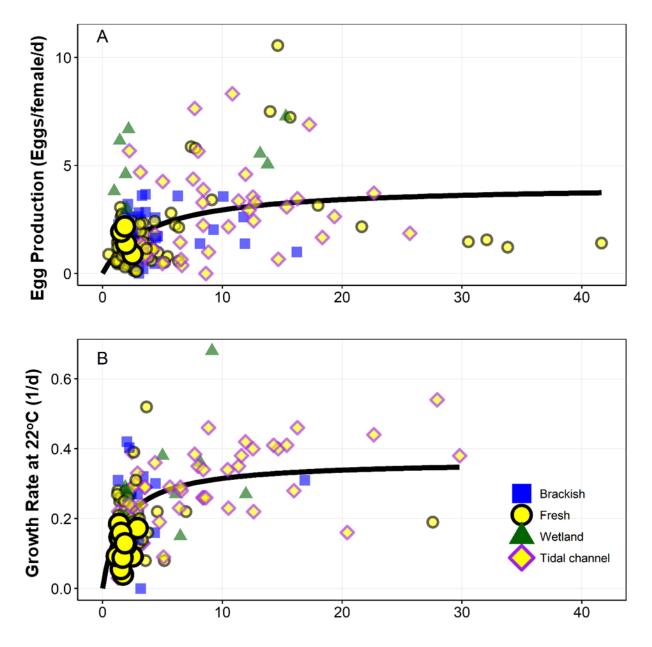



Figure 76. Abundance of common zooplankton taxa collected by EOS group vs. that collected by Regional San group and analyzed by BSA Environmental Services, Inc. (BSA), Shapes show day of September 2019, colors of edges show North Fork Mokelumne River vs. South Fork Mokelumne River, and numbers in symbols give sample station numbers. Lines are 1:1. A, total copepods including nauplii; B, total cladocerans; C, total ostracods.

Egg production and growth rates generally can be highly variable and are related to chlorophyll concentration and other measures of food availability, though with considerable scatter. To place the rates obtained here in context, we plotted these rate measurements against chlorophyll together with all other measurements the EOS laboratory has done (Figure 77, Gearty et al. 2021). Both rates were at the low end of the previously measured rates but were commensurate with the low chlorophyll concentrations.

Figure 77. Egg production (A) and growth (B) rates of *P. forbesi* vs. chlorophyll concentration, including all measurements made to date. Large symbols are from the current study. Lines are fitted to all the data (Gearty 2021). Growth rates have been adjusted from incubation temperatures to 22 °C for comparison.

Clam Biomass and Grazing

Clam biomass ranged from 0.090–7.265 g/m², with a mean of 1.773 \pm 0.436 g/m² (SE) and median of 1.327 g/m² (Figure 78). Biomass was highest at the SR1 and SFM4 stations. Clam grazing, as a percentage of the water column grazed per day, ranged from 0.2–8.4%, with a mean of 2.4 \pm 0.5% (SE) and median of 2.0% (Figure 79). Similar to biomass, grazing was highest at the SR1 and SFM4 stations.

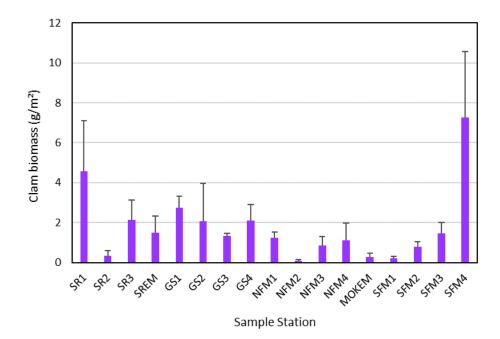


Figure 78. Biomass of clams at discrete water sample stations, on 9/24/19–9/25/19 (sampling was conducted over two days). Station name abbreviations are defined in Table 6. Error bars represent the standard error of the mean.

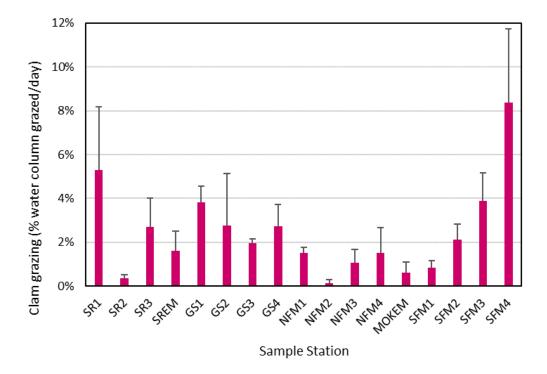


Figure 79. Estimated grazing by clams (percentage of the water column grazed per day) at discrete water sample stations, on 9/24/19–9/25/19 (sampling was conducted over two days). Station name abbreviations are defined in Table 6. Error bars represent the standard error of the mean.

We compared the clam biomass and turnover observed in the current study with previous observations from October 2013, June 2014, and May and October 2016. Biomass at Freeport (SR1) and Hood (SR3) in the current study was well within the range of previous observations, while biomass at RM44 (SR2) was lower (Figure 80). Likewise, grazing rates at Freeport (SR1) and Hood (SR3) in the current study were well within the range of previous observations, while the grazing rate at RM44 (SR2) was lower than in previous studies (Figure 81).

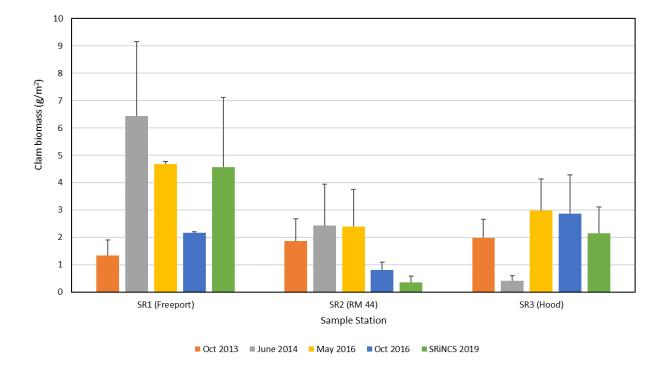


Figure 80. Comparison of the biomass of clams in this study at three sample stations on 9/24/19, with biomass observed at these stations in previous studies in 2013, 2014, and 2016. Station name abbreviations are defined in Table 6.

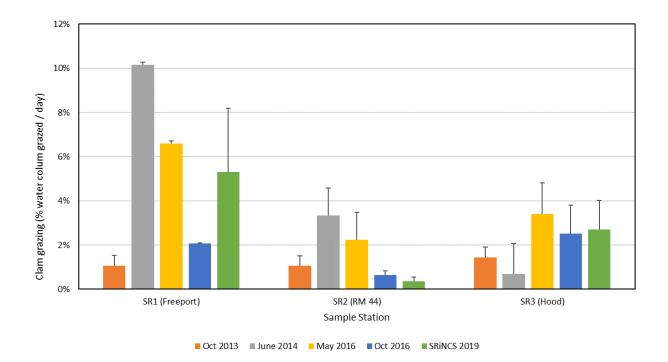


Figure 81. Comparison of the estimated grazing by clams (percent turnover of water column per day) in this study at three sample stations on 9/24/19, with grazing observed at these stations in previous studies in 2013, 2014, and 2016. Freeport is station SR1, RM44 is station SR2, Hood is station SR3. Station name abbreviations are defined in Table 6.

Summary and Discussion

Observed Changes in Environmental Factors and Phytoplankton Responses

Both the flow modeling and the high-resolution boat-based monitoring suggested that a well-defined without-wastewater treatment was produced in Georgiana Slough and North Fork Mokelumne River, while the pattern in the South Fork Mokelumne River was slower to develop and complicated by variable mixing of Sacramento and Mokelumne River inputs, and presumably also water from the three dead-end sloughs. The high-resolution transects showed distinctly lower concentrations of ammonium, nitrate, and DIN in the absence of wastewater. Measured fluorescent chlorophyll concentrations were generally low throughout the study region (<10 μ g/L). Data from the bbe Fluoroprobe, which attributes the total measured chlorophyll fluorescence to four different classes of phytoplankton, suggested that blue-green algae were more abundant in the South Fork of the Mokelumne River, potentially due to inputs from the three higher residence time dead-end side sloughs. Chlorophyll fluorescence attributed to diatoms decreased in association with the decrease in wastewater nutrient loading from 9/10/19 (WW+) – 9/11/19 (WW-), but only in the North Fork Mokelumne River. Chlorophyll fluorescence attributed to blue-green algae showed a slight decrease from 9/10/19 (WW+) – 9/12/19 (two days of WW- conditions) across the study area.

Based on discrete water sample measurements from boats sampling in each channel, turbidity decreased significantly with day, as wastewater loading decreased (tests on data from four sample stations in each of the three channels on each of the three days, 9/10/19, 9/11/19, and 9/12/19). Due to the decreased turbidity, light availability increased across the three days of the experiment. The turbidity change seemed to be related to changes in the Sacramento River upstream of the SRWTP discharge point, rather than resulting from the without-wastewater condition. Data from the USGS continuous monitoring station at Freeport show that the turbidity reduction occurred upstream of the outfall and was not due to the EVR diversion (Figure 82). It took over a day for the reduced turbidity concentrations observed at Freeport on 9/ 9/19 to travel downstream into the sampling locations within Georgiana Slough, North Fork Mokelumne River, and South Fork Mokelumne River, as indicated by the RMA hydraulic modeling (see Appendix 2). These changes in water clarity with day of the study confounded our ability to interpret the potential differences in phytoplankton abundance and productivity in relation to the changes in nutrient concentrations associated with the EVR diversion.

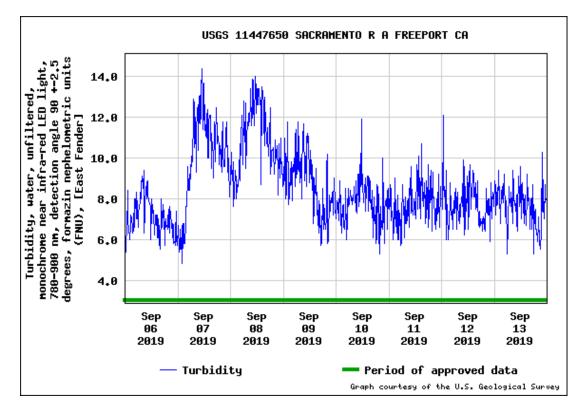


Figure 82. Turbidity recorded at the USGS continuous monitoring station at Freeport, from 9/6/19–9/13/19. Figure from U.S. Geological Survey (2022).

There was a roughly 1,400 cfs reduction in river discharge in the four days before the experiment, which might be related to the lowered turbidity (Figure 83).

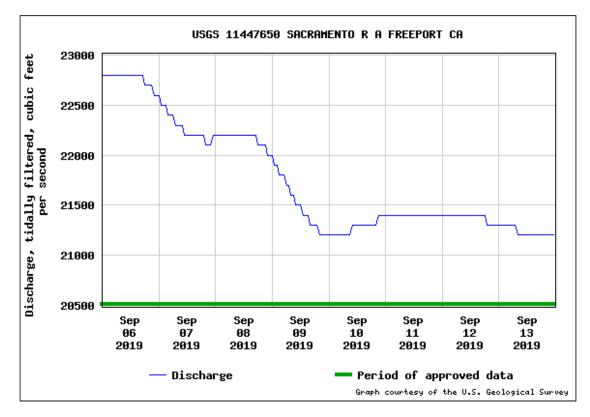


Figure 83. Discharge recorded at the USGS continuous monitoring station at Freeport, from 9/6/19–9/13/19. Figure from U.S. Geological Survey (2022).

In the discrete water samples, values of dissolved nitrogen, dissolved TKN, nitrate, and ammonium on 9/11/19 and 9/12/19 were lower than on 9/10/19, in association with the decrease in wastewater nutrient loading. For nitrate, values on 9/12/19 were lower than on 9/10/19. However, dissolved total phosphorus, DIC, DOC, and silica did not differ with day of the experiment. Likewise, sonde measurements of temperature, dissolved oxygen, specific conductance, and pH did not differ with day. As was the case with the high-resolution mapping, chl-a in the discrete water sampling did not differ with day, with a median concentration of approximately 3 μ g/L chl-a throughout the three-day time course in all three channels. However, at the SREM station and three stations in Georgiana Slough the chl-a concentrations increased from approximately 3 μ g/L to 5 μ g/L by 9/12/19. Cyanobacteria density in the discrete water samples decreased significantly with day, as did total phytoplankton density. The biovolume of all forms of phytoplankton did not differ significantly with day. Although changes in phytoplankton cell densities with day were statistically significant, they were not enough to impact chl-a concentrations, which remained low throughout the three-day time course. Because cell densities are determined on relatively few cells (i.e., 400 cells or less) compared with the total number of phytoplankton cells in a liter of water (i.e., close to 1 million cells), they are not a robust measurement in terms of determining total phytoplankton biovolume. Rather, cell densities can be used for determining relative contributions of different phytoplankton taxa to the phytoplankton community.

Carbon uptake increased significantly with day, while the enrichment of δ^{13} C-POC became significantly more negative with day. Meanwhile, POC did not differ significantly with day. Productivity increased on

day 3, presumably following a day of acclimation to the higher water column light intensities (i.e., photoacclimation) observed on day 2 (9/11/19; Geider et al. 1998). When phytoplankton cells are acclimated to low light, an increase in light intensity will typically lead to photoinhibition resulting in a depression of productivity before cells acclimate to the higher light intensities and increase their productivity (Long et al. 1994, Geider et al. 1998, Behrenfeld et al. 1998). This pattern of depression in productivity following an increase in light was evident in all three channels on day 2 (9/11/19) when carbon uptake was depressed relative to day 1, followed by an increase in carbon uptake on day 3 (Figure 58). This was not the case in the MOKEM sample station where increases in carbon uptake occurred on day 2 as well as day 3, suggesting that the phytoplankton community in this channel was already acclimated to higher irradiances and could increase its rate of carbon uptake in response to the change in irradiance without having to go through a period of photoacclimation. Following increases in carbon uptake, increases in phytoplankton biomass will occur according to the growth rate of the phytoplankton. During the current experiment, phytoplankton were growing at a rate of 80–90 μ g C/L/d, and the doubling time for phytoplankton biomass of $250-300 \ \mu g C/L$ would be approximately 3 days. This suggests that an increase in carbon uptake rate would take three days to manifest as an increase in phytoplankton biomass. As such, the time frame of the current experiment was likely too short to observe differences in phytoplankton biomass related to changes in "bottom-up" parameters such as irradiance.

Total zooplankton density and Cladocera density decreased significantly with day, but this appeared to be driven by changes in a single channel, the South Fork Mokelumne River. The biomass of total zooplankton, Cladocera, and all other forms of zooplankton biomass did not differ significantly with day. Furthermore, zooplankton growth metrics appeared to show little or no effect of wastewater or the lack thereof. Clam abundance was not anticipated to change during the short timeframe of the halt in wastewater nutrient loading. Clam biomass was assessed on one occasion, two weeks subsequent to the other sampling, in order to provide estimates of grazing, which ranged from 0.2–8.4%, as a percentage of the water column grazed per day.

Observed Food Web Changes

Our observed food web diagram confirms some of our predictions, but some remain unclear. Nitrogen forms decreased with day, but the effects on phytoplankton are uncertain, as relative changes in community composition did not contribute to overall changes in phytoplankton biomass as measured by fCHL or chl-*a* concentrations in discrete water samples. As we have discussed in the previous section, non-limiting concentrations of nutrients would not necessarily be expected to have an impact on phytoplankton biomass, while increased irradiance may have impacted carbon uptake, but may not have induced a measurable change in biomass over the short timeframe of this experiment. Notably:

1. Measured fluorescent chlorophyll-*a* concentrations were generally low throughout the study region (<10 μ g/L). High-resolution mapping detected higher fCHL concentrations in the North Fork Mokelumne River on 9/10/19 when nitrogen concentrations were high compared to 9/11/19 or 9/12/19. Meanwhile, chl-*a* discrete water samples indicated that the average chl-*a* concentrations within the three channels did not change significantly with day of the experiment. In the enumeration discrete samples, total phytoplankton density, but not biovolume, decreased with day, with densities on 9/10/19 exceeding densities on 9/12/19.

2. Chlorophyll fluorescence attributed to diatoms decreased in association with the decrease in wastewater nutrient loading from 9/10/19–9/11/19, but only in the North Fork Mokelumne River. Meanwhile, Bacillariophyta (diatom) density and biovolume in the phytoplankton enumeration discrete water samples did not differ with day.

3. Chlorophyll fluorescence attributed to blue-green algae showed a slight decrease from 9/10/19– 9/12/19. Meanwhile, the phytoplankton enumeration discrete water samples showed that average Cyanobacteria density, but not biovolume, decreased with day, with densities on 9/10/19 exceeding densities on 9/12/19.

Based on the results from the bbe Fluoroprobe fluorescence for diatoms and blue-green algae, and also the discrete sample enumeration densities for total phytoplankton and Cyanobacteria, we have shown observed phytoplankton abundance as "decreased" in the observed food web below (Figure 84). Note that if we had used the total fCHL or chl-*a* discrete sample results, or discrete sample biovolume results, the size of the "Observed" Phytoplankton box would have been the same with or without wastewater effluent loading. Changes in zooplankton abundance were inconclusive (no differences in biomass with day but decreases in density of total zooplankton and Cladocera that were presumably driven by changes in the South Fork Mokelumne River only), so we have shown zooplankton abundance as unchanged. We continue to assume that clam biomass was unchanged during the course of the experiment.

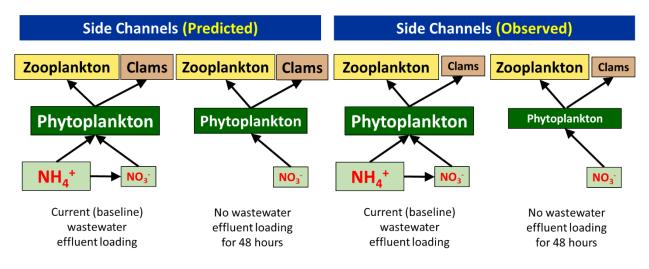


Figure 84. Simplified food web diagrams for the channel area showing predicted and observed (discrete water sample) wastewater nutrient load (focusing on ammonium and nitrate) and standing stock biomass under two scenarios: (1) Current effluent nutrient loading, (2) No effluent loading, as occurred during the 48-hour EVR diversion on 9/10/19–9/11/19. The box size shows biomass at each trophic level relative to the other situations.

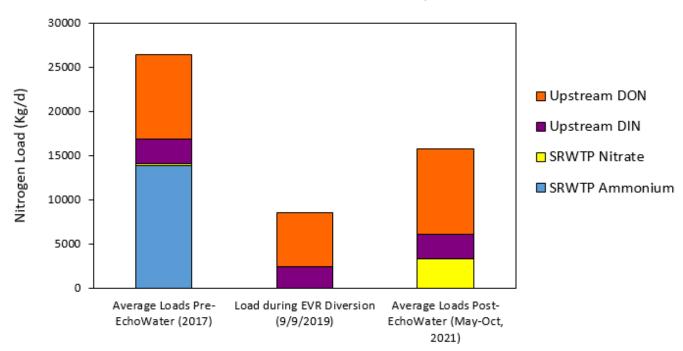
Observed Conceptual Model Diagram

Based on our results, some parts of our conceptual model have become clearer, while others are still uncertain. During the without-wastewater treatment ammonium concentrations nearly disappeared, and nitrate concentrations decreased (Figure 85). As we had anticipated, depths in the three channels were somewhat shallower than in the Sacramento River, allowing for a greater proportion of the water column to be in the euphotic zone for a given level of turbidity. However, light increased throughout the study area across the three days of the study, not just in the channels, apparently due to lower turbidity water entering the system from upstream of Freeport. Based on the RMA particle tracking model, particle transport speeds were similar in Georgiana Slough and the North Fork Mokelumne River and were less than half of those occurring in the Sacramento River.³ The slowest particle transport speed occurred in the South Fork Mokelumne River. The time needed for 50% of particles to travel from Station 1 to Station 4 in each channel (Figure 1) was 10.75 h in Georgiana Slough (9.41 km), 11.75 h in the North Fork Mokelumne River (9.00 km), and 25 h in the South Fork Mokelumne River (10.82 km). Uncertainty remains regarding the response of phytoplankton to the change in wastewater nutrient loading, since fCHL and chl-a in discrete water samples did not show consistent differences across the study period and study area, whereas chlorophyll fluorescence attributed to blue-green algae and their density in discrete samples showed decreases. As noted above for the food web diagrams, changes in zooplankton density and biomass were inconclusive, while zooplankton growth did not change significantly. We assume that clam abundance did not change over the short time frame of this experiment. As for the food web diagram above, phytoplankton in our conceptual model below are illustrated with the changes we observed in blue-green algae abundance, as well as the discrete sample enumeration densities for total phytoplankton and cyanobacteria.

³ Freeport to SREM: 19 RM/13.5 h = 1.4 mph; SREM to GS4: 8.9 RM/17.25 h = 0.52 mph; SREM to NFM: 8.6 RM/16.25 h = 0.53 mph; SREM to SFM: 9.2 RM/30.75h = 0.30 mph. River mile distances were estimated from Google Earth. Estimated water velocities are from the RMA particle tracking results, for the 9/10/19, release at 00:00 at Freeport.

Figure 85. Observed conceptual model showing changes in the food web in the three downstream channels - Georgiana Slough, the North Fork Mokelumne River, and South Fork Mokelumne River during the cessation of nutrient loading from the wastewater treatment plant. The Delta Cross Channel gates, indicated by a gray bar between the Sacramento River and Mokelumne River, were open for the duration of the study.

Adaptive Management Approach


Adaptive management research experiments, such as the study we have described here, could be used to better understand the potential effects of future nutrient management actions, and to inform future nutrient policy development. Adaptive management has evolved since it was first envisioned in the early 1970s (Holling 1978, Walters 1986, Lee 1993, Westgate et al. 2013). Early proponents sought to design adaptive management experiments, often at pilot or temporary scale, and usually incorporating computer modeling techniques, to test the outcomes of potential full-scale management actions (Holling 1978). Collaboration with managers, and with those who are managed or regulated (e.g., commercial fishermen, foresters, public utilities) was found to be essential to having managers actually proceed with the management experiment in order to decrease uncertainty about the mechanisms governing a particular ecosystem (Walters 1986). More recently, adaptive management research includes collaboration with a broad group of stakeholders, to develop solutions that consider many perspectives and have a good chance of achieving wide buy-in (Lee 1993). In spite of advances in adaptive management processes, these types of projects are rarely truly successful (Westgate et al. 2013), often because of a lack of collaboration between scientists and representatives from resource

managing entities, a lack of awareness of the risks of not doing adaptive management, and because adaptive management projects fail to "pass the test of management relevance." We believe our completed project is a successful example of adaptive management for several reasons: (1) our project team included scientists drawn from respected universities, scientific agencies, and consulting firms, in collaboration with scientists at Regional San, the regional wastewater treatment utility; (2) utility managers were already on board with the experiment and were interested in learning how the aquatic community responded to the wastewater loading change; and (3) our project is highly managementrelevant to efforts such as the Delta Nutrient Research Plan (Central Valley Regional Water Control Board 2018). We studied the outcome of a temporary, major nutrient reduction that was already taking place—a complete cessation of discharge of effluent from the SRWTP to the Sacramento River—to gain information about potential future changes to SRWTP effluent loading. In addition, our study may help advance adaptive management practices and inform future nutrient policy developments in the Delta, because it addressed key scientific uncertainties and information gaps identified in the Delta Nutrient Research Plan (Central Valley Regional Water Quality Control Board 2018) as described in detail in Appendix 1.

Implications for Future Delta Nutrient Management

The SRINCS examined the effects of a complete cessation of nutrient loading from SRWTP, but this was possible only for a timeframe of 48 hours. It is possible that certain parts of the habitat and food web were able to buffer the effects of decreased nutrient loading during this relatively short timeframe. For example, nutrient flux out of the sediment may have added to the nutrient pool in the water column and compensated to some degree for the decreased loading from SRWTP, as has been observed in previous nutrient studies in this section of the Sacramento River (Kraus et al. 2017a, Kraus et al. 2017c). Submerged aquatic vegetation was prevalent along the shoreline in all study channels except the Sacramento River. Sediment captured within the foliage of this vegetation would presumably contain nutrients and these could have been released to the mid-channel areas, also compensating for the decreased nutrient loading. Measurement of these potential fluxes was beyond the scope of the current study but could be addressed in future research (Christman et al. In press).

Given a longer period of decreased loading, different responses could have been observed in the food web in our study area. Our project was only a 3-day experiment, with two days of no wastewater nutrient loading. As such, our observations were easily influenced by short-term fluctuations in upstream water sources, particularly in terms of turbidity, but also phytoplankton community composition. It remains to be seen what will be observed in longer experiments to study the effects of a permanent decrease in nitrogen loading, as is occurring with the EchoWater Project, because these studies will be able to look at longer-term average conditions. Following the completion of the EchoWater Project biological nutrient removal upgrade in spring 2021, loading of ammonium from SRWTP has decreased by >95%. Since the ammonium has been converted to nitrate (nitrification), followed by partial denitrification, loading of nitrate in the effluent has increased, but the overall loading of DIN (mainly as ammonium and nitrate) from SRWTP has decreased by approximately 75% (Figure 86). While this decrease in nutrient loading from SRWTP is not as dramatic as that conducted for the SRINCS in 2019, the decrease will be sustained. Monitoring the river after this permanent transition may reveal ecological changes that occur due to a long-term nutrient reduction. Following the treatment plant upgrade, effluent nutrients stored in the sediment may gradually be released to the water column through time, until the sediment nutrient store reaches a new equilibrium with the water column. In the future, more than half of the total nitrogen in the Sacramento River may be bound within organic material in September (Figure 86, post-EchoWater Project), and potentially in other months as well, which can be less available for uptake by phytoplankton and vascular plants, compared with the previous ammonium loads. Submerged aquatic vegetation may be broken down and flushed out of the channels during high winter flow events, thus transporting nutrients out of the system that are stored within the above-root part of the plants, or in the sediment trapped within the foliage. It would also be interesting to study the change in submerged and floating aquatic vegetation biomass under the new regime of lower SRWTP nutrient loading.

Estimated DON and DIN loads at Freeport

Figure 86. Estimated changes in Sacramento River nutrient loads related to the EVR diversion and the EchoWater Project. The pre-EchoWater loading estimate is based on average nitrogen concentrations and corresponding river discharges in Sacramento River at Freeport during the month of September from 2013–2020 as well as the average wastewater effluent nitrogen concentrations and corresponding daily effluent flows in 2017. The EVR load estimate is based on discrete water samples collected from the Sacramento River at Freeport on 9/9/19, combined with the corresponding river discharge at Freeport. The post-EchoWater data are based on average nitrogen concentrations and corresponding river discharges in Sacramento River at Freeport during the month of September from 2013–2020 as well as the average wastewater effluent nitrogen concentrations and corresponding river discharges in Sacramento River at Freeport during the month of September from 2013–2020 as well as the average wastewater effluent nitrogen concentrations and effluent flows from May–October in 2021. Following nitrification and denitrification from the EchoWater Project, ammonium concentrations in SRWTP effluent are below the reporting limit of 0.1 mg/L but may provide a minor contribution to the total nitrogen load in the Sacramento River (not shown in figure).

Seasonal and inter-annual effects on the Sacramento River watershed may also influence future nutrient loads and transport. Nutrient concentrations in the Sacramento River upstream of the Delta may vary between winter and summer (Saleh and Domagalski 2021), whereas the nutrient loading from SRWTP is relatively consistent throughout the year. In addition, there may be effects of water year type. Wet

years may involve increased flow volume, which would cause nutrients loaded from SRWTP to be transported downstream faster with less time for biogeochemical transformations and would also dilute these nutrient loads to lower concentrations (White et al. 2021). River flows during the SRINCS were relatively high (the study occurred near the end of water year 2019, which in the Sacramento Valley was classified as a Wet year), but the 2020 and 2021 water years have been dry, which may make before and after comparisons of river conditions before and after the SRWTP EchoWater Project upgrade more challenging.

Finally, because our study took place during a short timeframe, other factors that may control phytoplankton growth, such as temperature and irradiance, were measured within relatively narrow ranges, which may have in turn affected the range of response of phytoplankton to altered nutrient concentrations. Our finding that plankton abundance and composition in a parcel of WW- water, after a period of 48 hours, did not differ appreciably from the wastewater-enriched water traveling in front of it may seem to imply that further reductions (or increases) in nutrient loading to the Delta would have no appreciable effect on Delta phytoplankton production. This is of interest in the context of increasing cyanobacterial harmful algal blooms in the Delta. The Delta is generally considered to be nutrient-enriched, so that other factors, including flow, temperature, and irradiance control cyanobacterial harmful algal blooms (Kudela et al. In press). However, when other factors such as temperature are favorable to the growth of harmful algae, the concentration of nutrients still sets an upper boundary on the harmful algae biomass that develops during a cyanobacterial harmful algal bloom event (Berg and Sutula 2015). Conversely, to completely suppress harmful algae, when other factors favor their growth, nutrient concentrations may need to be reduced to levels that would also preclude the growth of beneficial phytoplankton necessary to support higher trophic levels of the Delta food web.

In summary, it is unclear whether the short-term (48-hour) removal of wastewater effluent and its nutrient load from these Delta river channels led to a change in the abundance of some forms of phytoplankton, because fCHL and chl-*a* concentrations did not show clear differences while chlorophyll fluorescence attributed to blue-green algae and their abundance in discrete samples showed decreases. Some of our results suggest that, given the observed growth rate of phytoplankton in our study area, the time frame of the current experiment was likely too short to observe differences in phytoplankton biomass related to changes in "bottom-up" parameters such as irradiance. It will be interesting and informative to see the potential effects of longer-term nutrient loading reductions. Such effects remain to be studied now that the SRWTP biological nutrient removal upgrade is in operation. The potential effects of buffering factors, including nutrients that may be stored in river sediment or within beds of aquatic vegetation (macrophytes), could also be examined in future studies. Additional research focused on the longer-term responses of nutrient cycling, and the abundance and growth of phytoplankton and zooplankton at lower nutrient concentrations, could inform future Delta ecosystem management.

References

- 40 C.F.R. § 141.13. 1975. Maximum contaminant levels for turbidity. <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141/subpart-B</u>
- 40 C.F.R. § 141.23. 1991. Inorganic chemical sampling and analytical requirements. <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-141/subpart-C/section-141.23</u>
- Applied Marine Sciences, Inc., 2017. Final Report: Spatial and seasonal patterns in irradiance phytoplankton, and grazers along the Sacramento River, California. Submitted to Sacramento Regional County Sanitation District, Sacramento, California. August 14, 2017. 65 p.
- Beaver, J.R., Jensen, D.E., Casamatta, D.A., Tausz, C.E., Scotese, K.C., Buccier, K.M., Teacher, C.E., Rosati, T.C., Minerovic, A.D., and Renicker, T.R. 2013. Response of Phytoplankton and Zooplankton Communities in Six Reservoirs of the Middle Missouri River (USA) to Drought Conditions and a Major Flood Event. Hydrobiologia 705, no. 1: 173–89. doi:10.1007/s10750-012-1397-1
- Behrenfeld, M.J., Prasil, O., Kolber, Z.S., Babin, M., and Falkowski, P.G. 1998. Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research 58:259-268.
- Berg, G.M., Driscoll S., Hayashi K., Ross M., and Kudela R. 2017. Variation in growth rate, carbon assimilation, and photosynthetic efficiency in response to nitrogen source and concentration in phytoplankton isolated from upper San Francisco Bay. Journal of Phycology 53(3):664-679. doi: 0.1111/jpy.12535
- Berg, G.M., Driscoll S., Hayashi K. and Kudela R. 2019. Effects of nitrogen source, concentration, and irradiance on growth rates of two diatoms endemic to northern San Francisco Bay. Aquatic Biology 28: 33-43
- Berg, G.M., and Sutula, M. 2015. Factors affecting growth of cyanobacteria with special emphasis on the Sacramento-San Joaquin Delta. Southern California Coastal Water Research Project Technical Report 869. 111 p.
- Bergamaschi, B.A., Downing, B.D., Kraus, T.E.C., and Pellerin, B.A. 2017. Designing a high-frequency nutrient and biogeochemical monitoring network for the Sacramento–San Joaquin Delta, northern California: U.S. Geological Survey Scientific Investigations Report 2017–5058, 40 p. https://doi.org/10.3133/sir20175058
- Beutler, M., Wiltshire, K., Meyer, B., Moldaenke, C., Lüring, C., Meyerhöfer, M., and Dau, H. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ.
 Photosynthesis research 72: 39-53. https://doi.org/10.1023/A:1016026607048.
- Burau, J., Ruhl, C., and Work, P. 2016. Innovation in monitoring: The U.S. Geological Survey Sacramento– San Joaquin River Delta, California, flow-station network. Fact Sheet. http://dx.doi.org/10.3133/fs20153061
- Canfield, D.E. Jr., and Bachmann, R.W. 1981. Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 414-423.
- Carlson, R. M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Analytical Chemistry 50: 1528-1531.
- Central Valley Regional Water Control Board. 2018. Delta Nutrient Research Plan. 40 p.
- Christman, M.A., Khanna, S., Drexler, J.Z., and Young, M.J. In press. Ecology and ecosystem impacts of submerged and floating aquatic vegetation in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science.

- Clasen, J. 1980. OECD (United Nations Organisation for Economic Cooperation and Development) Cooperative Programme for Monitoring of Inland Waters (Eutrophication Control), Regional Project, Shallow Lakes and Reservoirs, Final Report, 1980.
- Clesceri, L.S., Greenberg, A.E., and Eaton, A.D. (Eds.). 1998. Standard Methods for the Examination of Water and Wastewater 20th edition. American Public Health Association. 1220 p.
- Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research 49:203-221.
- Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34:127-168.
- Cloern, JE. 2021. Use Care When Interpreting Correlations: The Ammonium Example in the San Francisco Estuary. San Franc Estuary Watershed Sci. [accessed 2022 March 10]; 19(4):1-11 http://dx.doi.org/<u>10.15447/sfews.2021v19iss4art1</u>
- Cole, B.E., and Cloern, J.E. 1984. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Marine Ecology Progress Series 17:15-24.
- Cole, B.,E., and Cloern, J.E. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36:299-305.
- Dahm, C.N., Parker, A.E., Adelson, A.E., Christman, M.A., and Bergamaschi, B.A. 2016. Nutrient dynamics of the Delta: effects on primary producers. San Francisco Estuary and Watershed Science 14(4): 1-35.
- Dillon, P.J., and Rigler, F.H. 1974. The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography 19: 767-773.
- Downing, B.D., Bergamaschi, B.A., Kendall, C., Kraus, T.E.C., Dennis, K.J., Carter, J.A., and Von Dessonneck, T.S. 2016. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments. Environmental Science and Technology 50(24): 13387-13396. DOI: 10.1021/acs.est.6b05745.
- Downing, B.D., Bergamaschi, B.A., and Kraus, T.E.C. 2017. Synthesis of data from high-frequency nutrient and associated biogeochemical monitoring for the Sacramento–San Joaquin Delta, northern California: U.S. Geological Survey Scientific Investigations Report 2017–5066, 28 p. <u>https://doi.org/10.3133/sir20175066</u>
- Fichot, C.G., Downing, B.D., Bergamaschi, B.A., Windham-Myers, L., Marvin-DiPasquale, M., Thompson, D.R., and Gierach, M.M. 2015. High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary. Environmental Science and Technology 50(2): 573-583. doi:10.1021/acs.est.5b03518
- Foe, C., Ballard, A., and Fong, S. 2010. Nutrient Concentrations and Biological Effects in the Sacramento-San Joaquin Delta. Technical report by staff of the California Regional Water Quality Control Board, Central Valley Region. Available: https://www.waterboards.ca.gov/rwqcb5/water issues/delta water quality/ambient ammoni

<u>a concentrations/foe nutrient conc bio effects.pdf</u>

- Geider, R.L., McIntyre, H.L. and Kana, T.M. 1998. A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature. Limnology and Oceanography 43:679-694.
- Gearty, A.J., Ignoffo, T.R., Slaughter, A.M., and Kimmerer, W.J. 2021. Growth and reproductive rates of the dominant copepod *Pseudodiaptomus forbesi* in response to environmental factors and habitat type in the northern San Francisco Estuary. Aquatic Ecology 55:825-848.
- Glibert, P.M. and Capone, D.G. 1993. Mineralization and assimilation in aquatic, sediment, and wetland systems. In: Knowles R., Blackburn, T.H. (eds) Nitrogen isotope techniques. Academic Press, New York, p 243–272.

- Guy, R.D., Vanderberghe, G.C., and Turpin, D.H. 1989. Significance of phosphoenolpyruvate carboxylase during ammonium assimilation. Plant Physiology 89:1150-1151.
- Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.
- Holling, C.S. (ed). 1978. Adaptive Environmental Assessment and Management (International series on applied systems analysis). John Wiley & Sons Ltd, Chichester, 398 p. Available online for free download: <u>http://pure.iiasa.ac.at/id/eprint/823/1/XB-78-103.pdf</u>
- Holmes, A.E. 2018. High-throughput sequencing reveals unexpected phytoplankton prey of an estuarine copepod. M.S. Thesis, San Francisco State University, May 2018.
- Ivlev, V.S. 1966. The biological productivity of waters. Journal of the Fisheries Research Board of Canada 23(11): 1727-1759.
- Jassby, A.D., Cloern, J.E., and Cole, B.E. 2002. Annual primary production: patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnology and Oceanography 47:698-712.
- Jassby, A.D. 2008. Phytoplankton in the upper San Francisco Estuary: recent biomass trends, their causes, and their trophic significance. San Francisco Estuary and Watershed Science 6(1) http://escholarship.org/uc/item/71h077r1.
- Kimmerer, W., Ignoffo, T.R., Bemowski, B., Moderan, J., Holmes, A., and Bergamaschi, B. 2018. Zooplankton dynamics in the Cache Slough Complex of the upper San Francisco Estuary. San Francisco Estuary & Watershed Science. 16(3). doi:10.15447/sfews.2018v16iss3art4. https://escholarship.org/uc/item/63k1z819.
- Kimmerer, W.J., and McKinnon, A.D. 1987. Growth, mortality, and secondary production of the copepod *Acartia tranteri* in Westernport Bay, Australia. Limnology and Oceanography. 32:14-28. doi:10.4319/lo.1987.32.1.0014.
- Kimmerer, W., Wilkerson, F., Downing, B., Dugdale, R., Gross, E. S., Kayfetz, K., Khanna, S., Parker, A.E., and Thompson, J. 2019. Effects of drought and the emergency drought barrier on the ecosystem of the California Delta. San Francisco Estuary and Watershed Science, 17(3). doi:https://doi.org/10.15447/sfews.2019v17iss3art2
- Kraus, T.E.C., Carpenter, K.D., Bergamaschi, B.A., Parker, A.E., Stumpner, E.B., Downing, B.D., Travis, N.M., Wilkerson, F.P., Kendall, C., and Mussen, T.D. 2017a. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium. Limnology and Oceanography 62 (3): 1234-1253.
- Kraus, T.E.C., Bergamaschi, B.A., and Downing, B.D. 2017b. An introduction to high-frequency nutrient and biogeochemical monitoring for the Sacramento–San Joaquin Delta, northern California: U.S. Geological Survey Scientific Investigations Report 2017–5071, 41 p., https://doi.org/10.3133/sir20175071.
- Kraus, T.E.C., O'Donnell, K., Downing, B.D., Burau, J.R., and Bergamaschi, B.A. 2017c. Using paired in situ high frequency nitrate measurements to better understand controls on nitrate concentrations and estimate nitrification rates in a wastewater-impacted river. Water Resources Research 53: 8423–8442. <u>https://doi.org/10.1002/2017WR020670</u>
- Kudela, R.M., Howard, M.D.A., Monismith, S., and Paerl, H.W. In press. Status, trends, and drivers of harmful algal blooms along the freshwater to marine gradient in the San Francisco Bay Delta system. San Francisco Estuary and Watershed Science.
- Lee, K.N. 1993. Compass and Gyroscope: Integrating Science and Politics for the Environment. Island Press, Washington, DC. 244 p.
- Lehman, P.W., Kurobe, T., Lesmeister, S., Baxa, D., Tung, A., and Teh, S.J. 2017. Impacts of the 2014 severe drought on the *Microcystis* bloom in San Francisco Estuary. Harmful Algae 63:94-108.

- Long, S.P., Humphries, S., and Falkowski, P.G. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology 45:633-662.
- Lopez, C.B., Cloern, J.E., Schraga, T.S., Little, A.J., Lucas, L.V., Thompson, J.K., and Burau, J.R. 2006. Ecological Values of Shallow-Water Habitats: Implications for the Restoration of Disturbed Ecosystems. Ecosystems 9:422–440. https://doi.org/10.1007/s10021-005-0113-7
- McNabb, Clarence D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnology and Oceanography 5(1): 57–61. https://doi.org/10.4319/lo.1960.5.1.0057
- Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., and Jickells, T.D. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience. 6(9):701. doi: 10.1038/ngeo1765
- O'Donnell, K., Stumpner, E.S., Fackrell, J., Soto Perez, J., Gelber, A., Delascagigas, A., Burau, D., Hansen, A., Sturgeon, C., Downing, B., Bergamaschi, B. and Kraus, T., 2022, Assessing spatial variability of nutrients, phytoplankton, and related water quality constituents in the California Sacramento-San Joaquin Delta during treated wastewater effluent holds: August and September 2019 high resolution mapping surveys. <u>https://doi.org/doi:10.5066/P9GNMDPB.</u>
- Owens, S., Ignoffo, T.R., Frantzich, J., Slaughter, A., and Kimmerer, W. 2019. High growth rates of a dominant calanoid copepod in the northern San Francisco Estuary. Journal of Plankton Research 41:939–954.
- Parker, A.E., Dugdale, R.C., and Wilkerson, F.P. 2012. Elevated ammonium concentrations from wastewater discharge depress primary productivity in the Sacramento River and the Northern San Francisco Estuary. Mar. Pollut. Bull. 64(3):574-86. doi: 10.1016/j.marpolbul.2011.12.016.
- Pellerin, B.A., Bergamaschi, B.A., Downing, B.D., Saraceno, J.F., Garrett, J.A., and Olsen, L.D., 2013,
 Optical techniques for the determination of nitrate in environmental waters: guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting:
 U.S. Geological Survey Techniques and Methods 1–D5, 37 p., https://doi.org/10.3133/tm1D5.
- R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing, Vienna.
- Regional San Environmental Laboratory. 2019. Regional San Environmental Laboratory Quality Manual, Effective July 1, 2019. 131 p.
- Resource Management Associates. 2020a. RMA Modeling of Sacramento River Nutrient Change Study. Prepared for Sacramento Area Sewer District & Sacramento Regional County Sanitation District. 73 p.
- Resource Management Associates. 2020b. River Depth Analysis in Support of the Sacramento River Nutrient Change Study. DRAFT. November 11, 2020. Prepared for the Sacramento Regional County Sanitation District. 7 p.
- Richey, A., Robinson, A., and Senn, D. 2018. Operation Baseline science and monitoring needs: a memorandum summarizing the outcomes of a stakeholder workshop and surveys. October 3, 2018. Prepared for the Delta Science Program. Prepared by San Francisco Estuary Institute-Aquatic Science Center. 45 p.
- Roeske, C.A. and O'Leary, M.H. 1984. Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose biphosphate. Biochemistry 23: 6275-6284.
- Ryther, J.H., and Dunstan, W.M. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171(3975): 1008-1013.
- Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie 62:1-28.

- Saleh, D., and Domagalski, J. 2021. Concentrations, Loads, and Associated Trends of Nutrients Entering the Sacramento–San Joaquin Delta, California. San Francisco Estuary and Watershed Science, 19(4):1-25. 10.15447/sfews.2021v19iss4art6
- Senn, D.B., Kraus, T.E.C., Richey, A., Bergamaschi, B.A., Brown, L.R., Conrad, J.L., Francis, C.A., Kimmerer, W., Kudela, R.E., Otten, T.G., Parker, A.E., Robinson, A., Mueller-Solger, A., Stern, D., and Thompson, J.K. 2020. Changing nitrogen inputs to the northern San Francisco Estuary: Potential ecosystem responses and opportunities for investigation. SFEI Contribution No. 973. San Francisco Estuary Institute, Richmond, CA.
- Stumpner, E.B., Bergamaschi, B.A., Kraus, T.E.C., Parker, A.E., Wilkerson, F.P., Downing, B.D., Dugdale, R.C. Murrell, M.C., Carpenter, K.D., Orlando, J.L., and Kendall, C. 2020. Spatial variability of phytoplankton in a shallow tidal freshwater system reveals complex controls on abundance and community structure. Science of The Total Environment 700: 134392. https://doi.org/10.1016/j.scitotenv.2019.134392.
- SYSTAT. 2017. SYSTAT version 13.2, Systat Software, San Jose, CA. https://systatsoftware.com/products/systat/
- United States Environmental Protection Agency. 2005. Manual for the Certification of Laboratories Analyzing Drinking Water, 5th Edition. EPA 815-r-05-004, January 2005. 209 p. <u>https://www.epa.gov/dwlabcert/laboratory-certification-manual-drinking-water</u>
- U.S. Geological Survey. 2022. USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed December 30, 2022, at https://doi.org/10.5066/F7P55KJN.
- Utermöhl, H. 1958. Methods of collecting plankton for various purposes are discussed. SIL Communications, 1953-1996, 9(1):1-38. DOI: 10.1080/05384680.1958.11904091
- Walters, C.J. 1986. Adaptive Management of Renewable Resources. Macmillan Publishing Company, New York. 374 p.
- Westgate, M.J., Likens, G.E., and Lindenmayer, D.B. 2013. Adaptive management of biological systems: A review. Biological Conservation 158: 128-139.
- White, S.R., Mugunthan, P. King, A.T., Karimpour, F., Kraus, T.E.C., Stumpner, E.B., Bergamaschi, B.A.,
 Lucas, L.V., and Senn, D. 2021. Delta-Suisun biogeochemical model: Calibration and validation
 (WY2016, WY2011). San Francisco Estuary Institute Contribution No. 1056. 112 p.
- Yee, D., Ross, R., Franz, A., Jabusch, T., Davis, J., Weaver, M., Heberger, M., Thompson, L., and Mussen, T. 2019. Delta Regional Monitoring Program Quality Assurance Project Plan for Fiscal Year 2019– 2020 Monitoring. Version 5. August 29, 2019. Prepared by Don Yee, John Ross, Amy Franz, Thomas Jabusch, Jay Davis, Michael Weaver, and Matthew Heberger (San Francisco Estuary Institute-Aquatic Science Center), Lisa Thompson and Tim Mussen (Sacramento Regional County Sanitation District (Regional San)). 250 p.
- Zar, J.H. 1984. Biostatistical Analysis, 2nd Ed. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 718 p.
- Zhang, Z., Senn, D., Holleman, R., and Nuss, E. 2018. Annual Progress Report for Delta-Suisun Bay Biogeochemical Modeling Project (Progress report). Richmond, CA: San Francisco Estuary Institute. URL:

http://sfbaynutrients.sfei.org/sites/default/files/2018_nms_fy2018_annual_report.pdf

Appendix 1. Relevance of SRiNCS to Management Drivers

Relevance to Delta Regional Monitoring Program Management and Assessment Questions

This study directly addressed the following Delta Regional Monitoring Program Management and Assessment Questions:

Status and Trends–Questions 1 and 1C

1. How do concentrations of nutrients (and nutrient-associated parameters) vary spatially and temporally?

C. Are there important data gaps associated with particular water bodies within the Delta subregions? *Explanation: Previous study of a wastewater diversion did not investigate effects in channels other than the Sacramento River.*

Sources, Pathways, Loadings and Processes–Questions 1, 1A, and 2A

 Which sources, pathways, and processes contribute most to observed levels of nutrients?
 How have nutrient or nutrient-related source controls and water management actions changed ambient levels of nutrients and nutrient-associated parameters?

2. How are nutrients linked to water-quality concerns such as harmful algal blooms, low dissolved oxygen, invasive aquatic macrophytes, low phytoplankton productivity, and drinking-water issues? A. Which factors in the Delta influence the effects of nutrients on the water-quality concerns listed above?

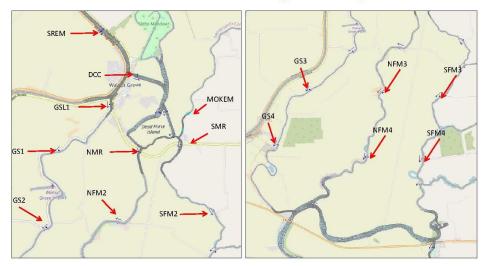
Explanation: The project will track the effects of a significant change in nutrient loading from wastewater. Comparisons among channels and with/without SRWTP effluent will allow examination of factors of light availability and water residence time.

Forecasting Scenarios

How will nutrient loads, concentrations, and water-quality concerns from Sources, Pathways, Loadings & Processes Question 2 respond to potential or planned future source control actions, restoration projects, water resource management changes, and climate change?

Explanation: The project is an opportunity to examine effects of a major change in nutrient loads. On an annual average basis, current nitrogen loads from Regional San and the Sacramento River upstream of Regional San are 14,000 and 18,500 kg N/day, respectively.

In fall, when the project monitoring will occur, the difference will be more marked as Sacramento River upstream nitrogen loads are lower than the yearly average.


Effectiveness Tracking

How did nutrient loads, concentrations, and water-quality concerns from Sources, Pathways, Loadings & Processes Question 2 respond to source control actions, restoration projects, and water resource management changes?

Explanation: The project is a preview of nutrient changes expected due to the Regional San EchoWater upgrade. The project uses an adaptive management approach to monitoring by utilizing pre-planned infrastructure changes to field-test hypotheses of effects of the upgrade.

Appendix 2. RMA Modeling of Sacramento River Nutrient Study (Flow and Transport) Final Report

RMA Modeling of Sacramento River Nutrient Change Study

Particle Capture Locations and Nomenclature

Presented to:

Lisa C. Thompson, Ph.D., Chief Scientist Sacramento Area Sewer District & Sacramento Regional County Sanitation District 10060 Goethe Road Sacramento, CA 95827 w (916) 876-6364, c (916) 207-7685 thompsonlis@sacsewer.com

<u>By</u>:

Marianne Guerin, Associate (925) 283-3729, maguerin@rmanet.com Richard Rachiele, Principal, richard@rmanet.com Resource Management Associates 1756 Picasso Ave Davis, CA 95618

Contents

Figures
Introduction
Section 1 RMA Delta Model Grid Development
Section 2 RMA2 Flow and Stage Model Calibration 11
Calibration Statistics
Section 3 Development of Flow/Stage Modeling for the Project
Section 4 Development of Volumetric Simulations
RMA11 Dispersion Parameter Calibration Using Electrical Conductivity (EC) 29
Volumetric Simulation Results
Section 5 Particle Tracking Simulations
Section 6 Summary of Results
Sources of Uncertainty in the Transport Model Simulations
Analysis and Findings
Appendix
Additional Flow Locations for the Calibration and Project Periods
Volumetric Output Example
Animations of Volumetric Percentages
Particle Tracking Output and Animations

Figures

Figure 1 Coverage of the RMA Delta model, with locations of the new or refined 2-D grid
development; near the Delta Cross Channel (blue) and the downstream sections of the North
Fork and South Fork Mokelumne River (red)
Figure 2 Additional detail for locations of new or refined 2-D grid development in the RMA
model; near the Delta Cross Channel (blue) and the downstream sections of the North and South
Mokelumne River (red)
Figure 3 Detail of the model 2-D grid and bathymetry near the Delta Cross Channel
Figure 4 Detail of the model 2-D grid and bathymetry near the downstream North Fork and
South Fork Mokelumne River
Figure 5 Inflow for the Sacramento River (top) and the Mokelumne River and the Cosumnes
River (middle) for 2016 calibration. Delta Cross Channel Gate operation for 2016 calibration
period (bottom)
Figure 6 Detail of the model 2-D grid and bathymetry near the Delta Cross Channel
Figure 7 Model and observed stage at the Delta Cross Channel station DLC
Figure 8 Model and observed flow at the Delta Cross Channel station DLC
Figure 9 Model and observed flow at the South Fork Mokelumne River station SMF
Figure 10 Model and observed flow at the North Fork Mokelumne River station NMF
Figure 11 Model domain for the RMA Delta Model
Figure 12 Inflow locations for the four relevant rivers in the RMA model grid
Figure 13 Comparison model RMA model flow (upper) and tidally-averaged flow (lower) output
with data at the Freeport data location (blue lines) which is denoted RSAC155 in the model
output (redlines)
Figure 14 The upper figure shows the boundary inflow used for the American River. Because the
Sacramento River inflow boundary is upstream of the American River, the American River flow
was subtracted from the Freeport flow, which was time-shifted (blue line) and then tidally
averaged (red line) for use at the inflow boundary (lower figure)
Figure 15 Data used as boundary inflow at the Mokelumne River boundary (upper figure) and at
the Cosumnes River boundary. The boundary flow used for the Cosumnes River (blue line) was
advanced 18 hours from the data at Michigan Bar and 50 cfs was added to the downloaded data
to improve EC model results downstream on the Mokelumne River
Figure 16 Effluent outflow from Regional San – where data was not requested, flow was set 200
cfs. Sections of zero flow indicate time frames when effluent flow was briefly ceased. The final
section of flow cessation occurred September $9 - 11$, 2019, which encompassed the project
experiment
Figure 17 Data (blue lines) and model output red lines) at the Delta Cross Channel location for
flow (upper figure) and tidally averaged flow (lower figure)
Figure 18 Data (blue lines) and model output red lines) at the Georgiana Slough location for flow
(upper figure) and tidally averaged flow (lower figure).
Figure 19 Sacramento River EC boundary condition
Figure 20 Regional San effluent EC boundary condition
Figure 21 Effect of ceasing Regional San effluent flow (top panel) on EC at Hood (center panel)
and in the DCC (bottom panel) for data (blue line) and model output (red line)

Figure 22 EC on the Sacramento River at RSAC123 (top panel), downstream on the Mokelumne River near the San Joaquin River(center panel), and at the southern end of Staten Island on the South Fork of the Mokelumne River (bottom panel) for data (blue line) and model output (red
South Fork of the Mokelumne kiver (bottom panel) for data (blue line) and model output (red line).
Figure 23 Detail view of EC at Freeport (top panel) and in the DCC (bottom pane) at model
output location DLC for data (blue line) and model output (red line) in September, 2019
Figure 24 Model output locations for volumetric time series – figure supplied by staff at
Regional San
Figure 25 Nomenclature and location for particle tracking and volumetric output in upper portion
of study area
Figure 26 Nomenclature and location for particle tracking and volumetric output in lower portion
of study area
Figure 27 Volumetric percentages by source at the boundary location on the Mokelumne River41
Figure 28 Volumetric percentages by source at RSAC155 on the Sacramento River
Figure 29 Volumetric percentages by source at model output location SREM on the Sacramento
River
Figure 30 Volumetric percentages by source at model output location SMR on the South Fork of
the Mokelumne River
Figure 31 Volumetric percentages of the three sources at model output location SMR on the
South Fork of the Mokelumne River illustrating variation across the river in transect
Figure 32 Volumetric percentages of the three sources at model output location NMR on the
North Fork of the Mokelumne River illustrating variation across the river in transect
Figure 33 Volumetric percentages of the three sources at model output locations SMR and
downstream at SFM4 on the South Fork of the Mokelumne River illustrating variation from
north to south down the river
Figure 34 Volumetric percentages of two sources at model output locations GS1 and downstream
at GS4 on Georgiana Slough illustrating variation from north (GS1) to south (GS4) down the
slough
Figure 35 Location of particle insertion lines – cyan blue in left hand figure are the locations of
Mokelumne particle insertion, and the right hand figure shows the locations of Regional San
particle insertions
Figure 36 Particles originating at the MOKEM source do not reach either Georgiana Slough (top
figure) of the North Forth of the Mokelumne River (lower figure)
Figure 37 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the SREM location. Particle counts have no physical meaning as particle insertion
values were designed for ease of visual interpretation
Figure 38 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the GS1 (upper figure) and GS4 (lower figure) locations. Particle counts have no
physical meaning as particle insertion values were designed for ease of visual interpretation 55
Figure 39 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the NFM1 (upper figure) and NFM2 (lower figure) locations. Particle counts have no
physical meaning as particle insertion values were designed for ease of visual interpretation 56

Figure 40 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the NFM3 (upper figure) and NFM4 (lower figure) locations. Particle counts have no
physical meaning as particle insertion values were designed for ease of visual interpretation 57
Figure 41 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the SFM1 (upper figure) and SFM2 (lower figure) locations. Particle counts have no
physical meaning as particle insertion values were designed for ease of visual interpretation 58
Figure 42 Particle arrival timing for particles representing Sacramento River water parcels
arriving at the SFM3 (upper figure) and SFM4 (lower figure) locations. Particle counts have no
physical meaning as particle insertion values were designed for ease of visual interpretation 59
Figure 43 Flow calibration results in Little Potato Slough, CDEC location LPS
Figure 44 Flow (upper) and tidally averaged flow (lower) results of the project period model at
Little Potato Slough
Figure 45 Flow calibration results in the Mokelumne River at the San Joaquin River, CDEC
location MOK
Figure 46 Flow (upper) and tidally averaged flow (lower) results of the project period model in
the Mokelumne River at the San Joaquin River. Unexplained data departures in the flow data
resulted in large deviations in the tidally averaged flow
Figure 47 Example of EXCEL file timeseries output for Mokelumne volumetric percent results
for several stations in the model domain
Figure 48 Initial frame of the Sacramento Volume % animation (File:
SRINCS.RMA.Sac.Volume.animation.pptx)
Figure 49 Initial frame of the Mokelumne Volume % animation (File:
SRiNCS.RMA.Moke.Volume.animation.pptx
Figure 50 Initial frame of the Regional San Volume % animation (File:
SRiNCS.RMA.RegSan.Volume.animation.pptx
Figure 51 Initial frame of the larger scale particle tracking animation (File:
SRiNCS.PTM.LrgScale.RegSanFinal.pptx)
Figure 52 Initial frame of the smaller scale particle tracking animation (File:
SRiNCS.PTM.SmlScale.RegSanFinal.pptx)
Figure 53 Setup for the particle tracking models used as input to the animations in the RMA
software
Figure 54 Documentation on the animation setup in the commercial software package
VideoMach

Introduction

This report includes documentation on numerical modeling tasks prepared by Resource Management Associates (RMA) for the Sacramento Regional County Sanitation District's (Regional San) Sacramento River Nutrient Change (SRiNCS) project. Documentation on model development and results from the primary tasks is included. One task specified refinement of the RMA Delta model grid for enhancing spatial resolution in the area of interest of the project as well as a check on the flow and stage calibration in this area of interest in a historical time frame. Sections 1 and 2 document the results of this work. In addition, a flow simulation covering the project time span was developed and its accuracy checked against measured data – this is documented in Section 3. In order to calculate volumetric percentages using a tracer modeling approach, a project specific transport model was developed covering the data acquisition period for the project. An EC model was developed as a template for the volumetric transport model to modify transport dispersion parameters reflecting changes to the modified grid. This is documented in Section 4. Section 5 documents the development, background and results from a particle tracking model. Section 6 summarizes Findings from the modeling tasks.

Section 1 RMA Delta Model Grid Development

A particular focus of the Sacramento River Nutrient Change study was the Mokelumne River system east of the Delta Cross Channel. The area is a complex system of interconnected channels and sloughs. River inflow is from the east from the upstream Mokelumne and Cosumnes Rivers. When the Delta Cross Channel gates are open, the flow regime is dominated by transfer flow from the Sacramento River, which varies widely in magnitude over the tidal cycle.

Specific conductance (EC) measurements performed during the field survey showed EC could vary significantly over a short distance near the channel junctions. To capture the detail of the source water mixing and attribution, the RMA Delta model grid was enhanced from 1-D elements to 2-D detailed elements in those areas (Figure 1 and Figure 2). Figure 3 shows the model bathymetry and grid detail near the Delta Cross Channel. Figure 4 the bathymetry and grid detail on the downstream North Fork and South Fork Mokelumne River.

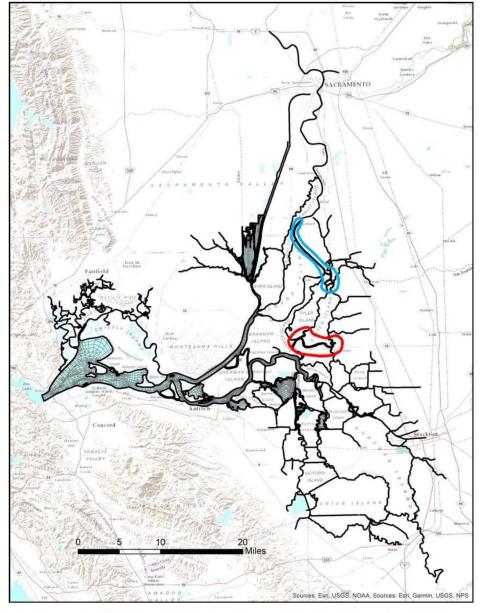


Figure 1 Coverage of the RMA Delta model, with locations of the new or refined 2-D grid development; near the Delta Cross Channel (blue) and the downstream sections of the North Fork and South Fork Mokelumne River (red).

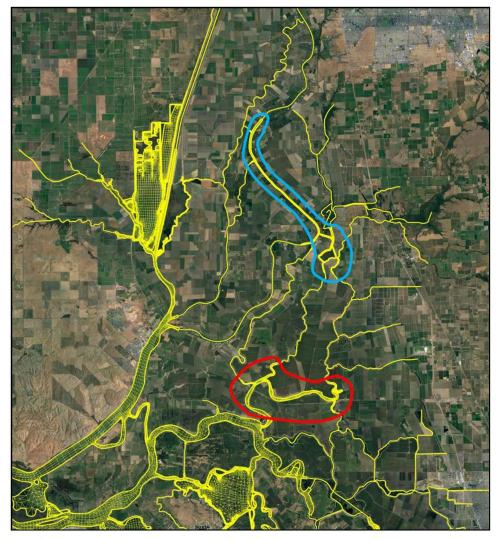


Figure 2 Additional detail for locations of new or refined 2-D grid development in the RMA model; near the Delta Cross Channel (blue) and the downstream sections of the North and South Mokelumne River (red).

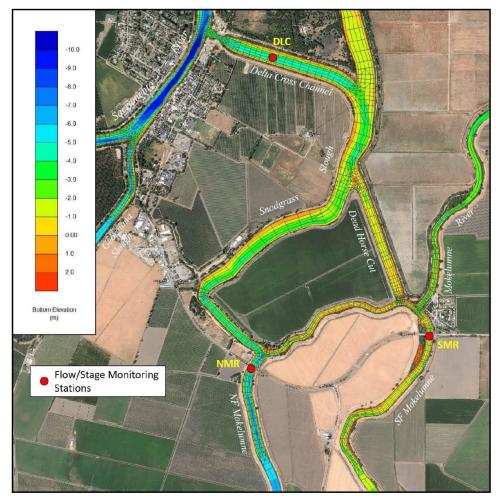


Figure 3 Detail of the model 2-D grid and bathymetry near the Delta Cross Channel.

Section 2 RMA2 Flow and Stage Model Calibration

The revised RMA Delta model grid developed and documented in Section 1 was calibrated/validated for flow and stage in the north Delta, with special interest to the Delta Cross Channel and the north and south forks of the Mokelumne River system.

The North Fork and South Fork Mokelumne River flow monitoring stations east of the Delta Cross Channel were lost during the 2017 winter season. As these locations are of particular interest, the calibration run was performed over the June 1 to July 31, 2016 period when the flow gauges were still functioning. Figure 5 shows the flow for the Sacramento River at Freeport, and the Mokelumne and Cosumnes Rivers for the calibration period. Also presented is the Delta Cross Channel (DCC) gates operation. Note that the DCC gates were open and closed twice in early June before permanently open for the summer season on June 18, 2016. In comparison to the 2019 field season, the 2016 June-July Sacramento River flow was somewhat lower, but higher than that for the previous three years of drought. The Mokelumne River flow was about 200 cfs in June 2016, similar to the flow in the first half of September 2019 during the field study. However, the early 2019 summertime Mokelumne River flow was much higher at 680 to 1500 cfs.

The observed and model stage/flow at selected Delta monitoring stations are compared in 3panel plots as illustrated in Figure 7.

- The top panel provides a visual comparison of the 15-minute interval observed and computed stage/flow to illustrate how well the model reproduces the inter-tidal dynamics of the system.
- The lower-left panel provides a visual comparison of the tidally-averaged (two passes of 24.75 hour moving average window) observed and computed stage/flow time series to illustrate how well the model reproduces the net flow or average stage over the simulation period.
- The lower-right panel presents a linear regression analysis of 15-minute computed and model stage or flow to provide statistical values of the model performance.

Calibration Statistics

Mean value and linear regression statistics were computed from 15-minute interval values of the model and observed time series over the June 1 to July 31 period (Figure 7) and provide an overall measure of the model bias. Model values were excluded from the mean value computation for the times when observed values were missing.

A cross-correlation analysis was first performed to determine the phase lag between the model and observed data time series. The phase difference was removed from the model time series and a linear regression perform for the shifted model time series versus the observed data time series. The regression metrics are described below.

Lag – The time offset for which the best correlation between model and observed data is obtained. Positive time lags indicate delayed model response relative to observed data. Negative time lags indicate model response in advance of observed data.

Tidal Amp Ratio – The slope of the best linear regression line between the tidal components of the modeled and observed data. This is calculated after the tidally-averaged signal has been removed from both data sets and the model data has been shifted to account for any time lag from the observed data. Amplitude ratios greater than 1.0 indicate an amplification of the tidal signal in the model relative to observed data. Amplitude ratios less than 1.0 indicate a dampening of the tidal signal.

 \mathbf{R}^2 – The square of the correlation coefficient for a linear regression between modeled and observed data. The better the model is at reproducing detailed variations and trends of the observed values, the smaller the scatter will be and the closer \mathbf{R}^2 will be to 1. Additionally, the slope of the regression line should be close to 1 to indicate a good fit.

Calibration plots of stage and flow for the Delta Cross Channel and the north and south fork Mokelumne River stations (Figure 6) are presented in Figure 7 to Figure 10. The figures show the model reproduces the observed stage and flow in the area for both the case with the DCC gates open and closed. Of note are the intricate peaks and troughs of the South Fork Mokelumne (SMR) inter-tidal flow, of which the model reproduces fairly well. All three flow station plots show the model phase is in advance of the observed flow phase. This is partly due to the observed flow being averaged over a 15-minute period which should contribute to a 7.5 minute phase lag in the observed data. Still the modeled phase remains several minutes advanced of the field measured flow and should be considered when comparing field and model water quality data. The calibration results for flow are shown at two additional stations, in Little Potato Slough and in the Mokelumne River at the San Joaquin River, in the Appendix (page 62, Appendix)

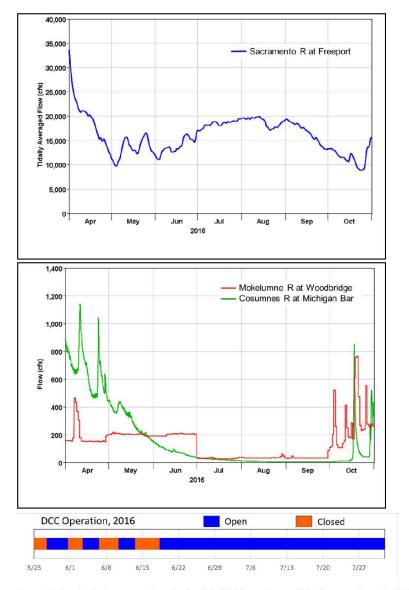
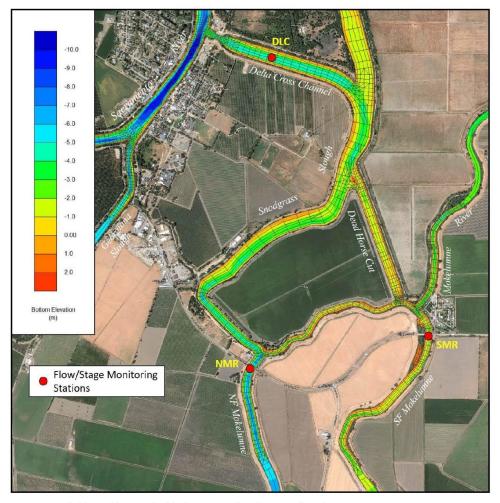
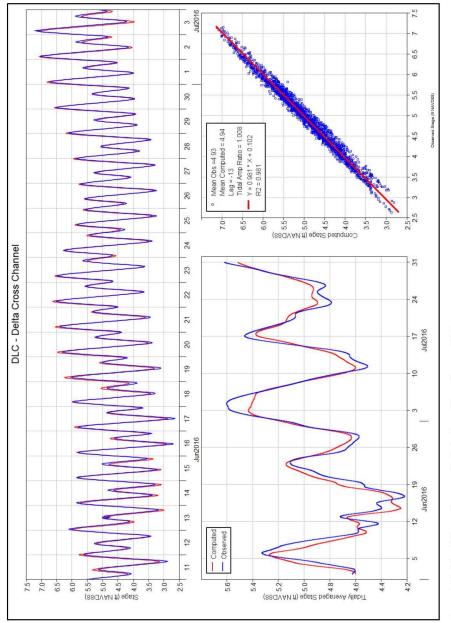
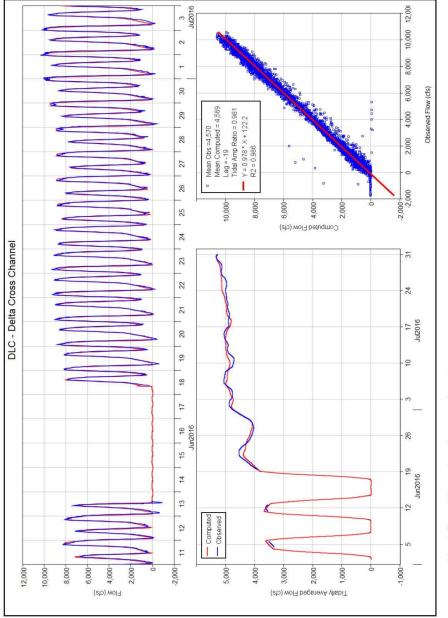
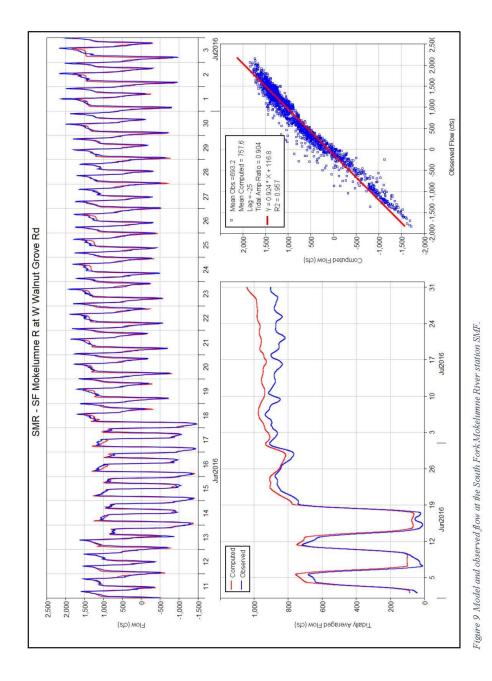
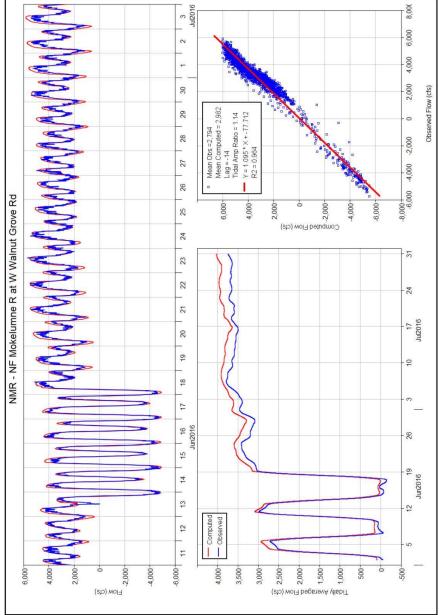


Figure 5 Inflow for the Sacramento River (top) and the Mokelumne River and the Cosumnes River (middle) for 2016 calibration. Delta Cross Channel Gate operation for 2016 calibration period (bottom).


Figure 6 Detail of the model 2-D grid and bathymetry near the Delta Cross Channel.



Section 3 Development of Flow/Stage Modeling for the Project

Starting from the calibrated RMA2 model with the updated grid developed for this project (see: Sections 1 and 2), project-specific inflow boundary conditions and comparison data were obtained for the relevant time span from standard data sources (CDEC, USGS, NOAA) as well as flow data for the Mokelumne River sourced from personal communications with staff at the East Bay Municipal Utility District, EBMUD. Regional San effluent flow and EC data was requested for the period July 01 through September 13, 2019 and obtained from Regional San staff (Timothy Mussen).¹ Figure captions indicate the data source for each relevant boundary condition.

Figure 11 shows the RMA Delta Model domain with inflow and outflow boundary locations in pink (circles) and cyan blue (bars), DICU (Delta Island Consumptive Use) locations in yellow and gates and barriers in red. As indicated in Figure 3 and Figure 4, the focus of modeling concerned the section of the Sacramento River through Georgiana Slough and the eastern section of the Delta focusing on the DCC and the Mokelumne River. Inflow locations for the Sacramento, American, Cosumnes and Mokelumne Rivers are indicated in Figure 12 – these rivers plus the effluent flow from Regional San form the most relevant inflow locations for this project. Boundary condition data for other locations was collected from standard RMA sources (CDEC and USGS for flow, NOAA for Martinez stage).

The RMA2 flow model was prepared for the period July 4, 2019 through September 19, 2019. Simulated flow and stage output were compared with data, and minor modifications made to correct timing or level of flow. After a modification to Cosumnes River inflow described in Section 4, the final flow simulation was used for all RMA11 transport simulations as well as particle tracking simulations. Note that DICU boundary conditions (inflows and outflows) were NOT included as these values are not available in real-time. Instead, they are calculated post-fact by staff at the Department of Water Resources' Delta Modeling Section using in-house modeling software. To compensate for this missing data, the Sacramento River inflow was set so as to obtain acceptable fits to flow, net flow and stage measurements at RSAC155 (Freeport) and at a few other standard measurement locations downstream on the Sacramento River. As mentioned below, while Regional San effluent flow was available as requested, effluent EC measurements were only available on a sparse, irregular data set which necessitated some fine-tuning of flow and EC boundary conditions as modeling progressed.

Figure 13 through Figure 16 show the inflow boundary conditions for the important locations. The Freeport location, Figure 13, had relevant data at downstream locations available for comparison during the development of the boundary conditions. The inflow location for Regional San effluent is near (downstream) the Freeport location in the model domain. As discussed in the next section on Volumetric modeling, the Cosumnes River boundary condition was altered by adding 50 cfs to the data. The timing and magnitude of the Regional San effluent flow was fine-tuned during periods without data measurements to improve results during the

¹ Data was available from July 01, 2019 through September 13th 2019, but the July data was not requested.

calibration of the dispersion coefficients of the RMA11 model. Figure 17 and Figure 18 show the comparison between data (blue lines) and model output (red lines) at the Delta Cross Channel and Georgiana Slough locations, respectively. The flow results before and during the project period are shown at two additional stations, Little Potato Slough and in the Mokelumne River at the San Joaquin River in the Appendix (page 62).

The DCC was the most important location with data to compare to modeled flow as this location captured Sacramento River inflow to the project region - there was no timeseries data internal to the project region for comparison. The mean percent difference between modeled tidally-averaged flow and data in the DCC was -3.2% with a standard deviation of 1.4 cfs, using 2824 data points from July 04 through August 20, 2019 (data not shown). This was deemed an acceptable difference for project purposes.

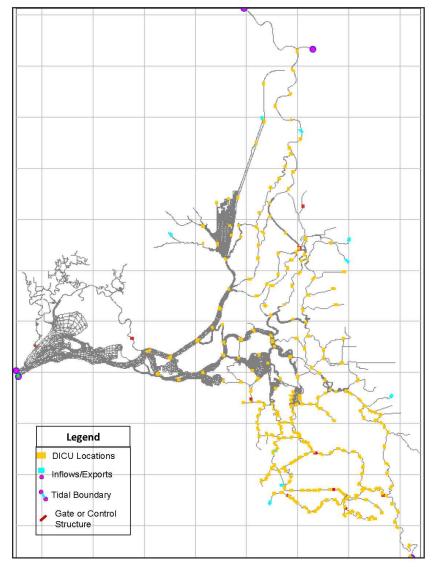


Figure 11 Model domain for the RMA Delta Model.

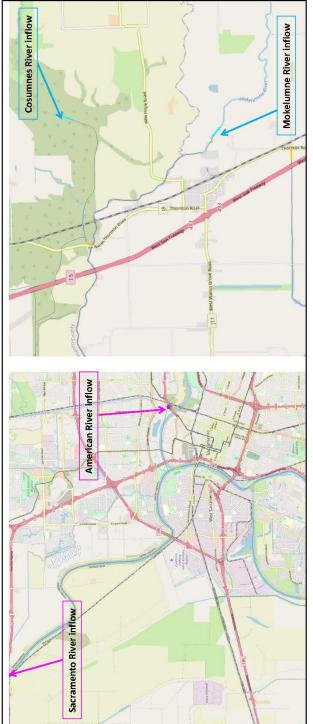


Figure 12 Inflow locations for the four relevant rivers in the RMA model grid.

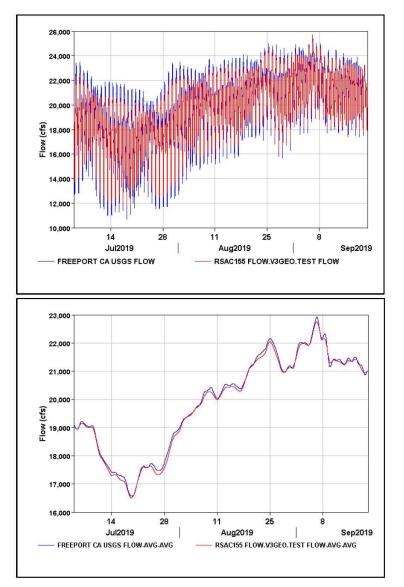


Figure 13 Comparison model RMA model flow (upper) and tidally-averaged flow (lower) output with data at the Freeport data location (blue lines) which is denoted RSAC155 in the model output (redlines).

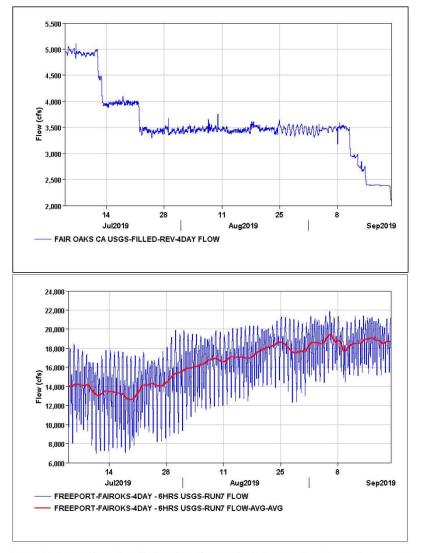


Figure 14 The upper figure shows the boundary inflow used for the American River. Because the Sacramento River inflow boundary is upstream of the American River, the American River flow was subtracted from the Freeport flow, which was time-shifted (blue line) and then tidally averaged (red line) for use at the inflow boundary (lower figure).

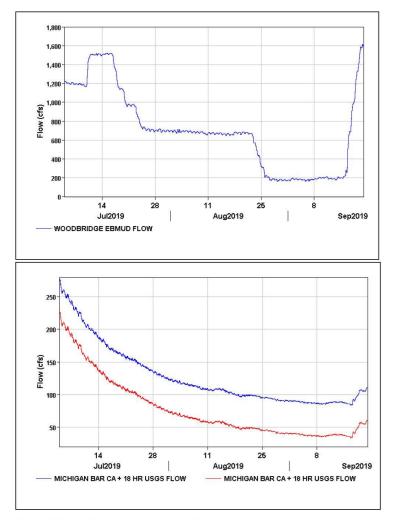


Figure 15 Data used as boundary inflow at the Mokelumne River boundary (upper figure) and at the Cosumnes River boundary. The boundary flow used for the Cosumnes River (blue line) was advanced 18 hours from the data at Michigan Bar and 50 cfs was added to the downloaded data to improve EC model results downstream on the Mokelumne River.

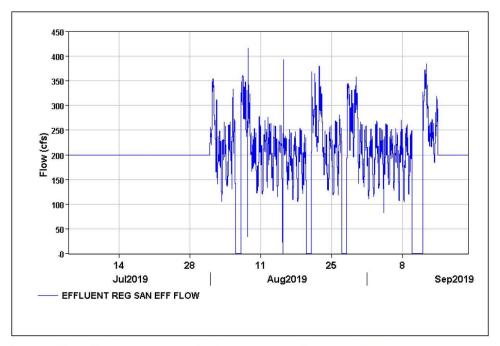


Figure 16 Effluent outflow from Regional San – where data was not requested, flow was set 200 cfs. Sections of zero flow indicate time frames when effluent flow was briefly ceased. The final section of flow cessation occurred September 9 - 11, 2019, which encompassed the project experiment.

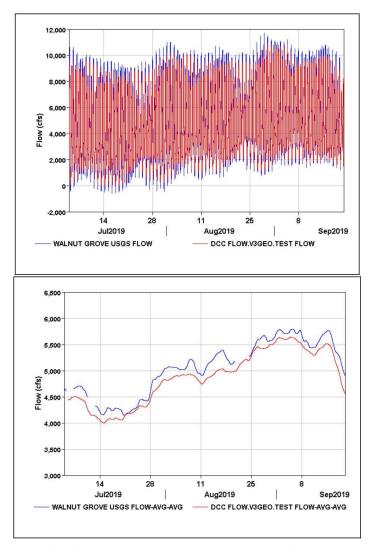


Figure 17 Data (blue lines) and model output red lines) at the Delta Cross Channel location for flow (upper figure) and tidally averaged flow (lower figure).

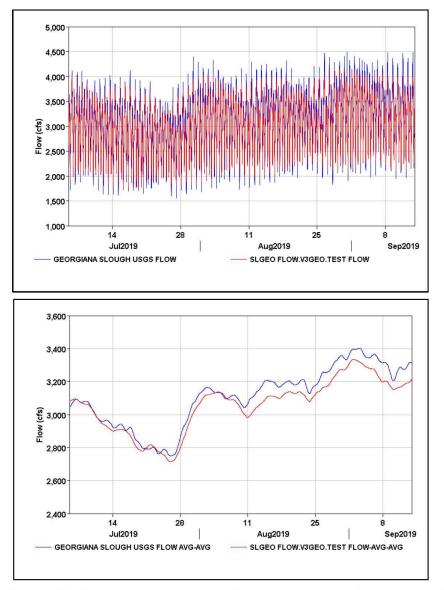


Figure 18 Data (blue lines) and model output red lines) at the Georgiana Slough location for flow (upper figure) and tidally averaged flow (lower figure).

Section 4 Development of Volumetric Simulations

RMA11 Dispersion Parameter Calibration Using Electrical Conductivity (EC)

The RMA11 EC model was used to provide the template for calibrating the dispersion parameters used in transport model volumetric simulations. EC behaves like a conservative tracer so this strategy produced an appropriate result for setting dispersion parameters for application in volumetric simulation. EC data availability from standard sources for boundary conditions and at several downstream locations was acceptable in the time frame of interest.

EC data to check the accuracy of the model was obtained from USGS project measurements, other project data and from standard online data sources (CDEC, USGS). The RMA11 model dispersion parameters were fine-tuned to closely match EC measurements for the period August through September 2019, focusing on the days when measurements were being collected for the project, September 09 – 12, 2019. Input of EC from DICU sources was not included as DICU flows were not included in the flow model. This omission required a 12 mS/cm (equivalent to UMHOS/CM shown in some figures) increase in the Sacramento River EC inflow. The EC of effluent from Regional San was requested for the period August 01 – September 13, 2019². During this period, the data consisted of a sparse data set which formed an additional source of uncertainty in the development of EC boundary conditions and therefore in the values set for dispersion parameters.

Refinement of the EC model boundary conditions and parameters began once the RMA2 flow model for the period July-September, 2019 was judged sufficient (i.e., when flow and stage output compared well to data). Regional EC calibration consisted mainly of refining the dispersion parameters values and spatial distribution, as well as changes in Regional San effluent flow and EC timing and magnitude during periods without data or with sparse data. Figure 19 documents the EC boundary condition for the Sacramento River – as implemented for the flow boundary, the EC time series was shifted in time. The EC at the Sacramento River inflow boundary was uniformly increased by 12 mS/cm to better match the data at Freeport – as mentioned above DICU flow or EC contributions were not included in the model setup. Figure 20 documents the EC boundary condition for Regional San effluent – the times where data was missing were estimated – effluent flow was ceased September 9-11, 2019 so there was no EC applied. EC at the American, Mokelumne and Cosumnes Rivers was set at a constant 40 mS/cm.

Figure 21 illustrates that cessation of effluent flow results in a measurable decrease of EC at downstream locations, although delayed in time due to transport in the river flow. Figure 22 shows model results in comparison with data at three locations within and just downstream of the project area. Figure 23 shows a shorter time frame comparison view in September 2019 at the most upstream location with available data at Freeport and at DCC, the downstream location that most affected the study area. Note the dispersion parameter calibration shows the transport

² Although EC data was requested during this period, it was available starting July 01, 2019.

²⁹

model was very good for timing and for magnitude at these locations, although low by a couple of mS/cm at the peaks.

The most difficult region for setting dispersion parameters consisted of the channels and rivers downstream of the Delta Cross Channel and especially at the split of the Mokelumne River into North and South branches. Except for USGS project measurements, no time series were available for comparing model output to measured data. Through multiple iterations of changes to dispersion parametrization, the output from these simulations was compared to project measurement data from the USGS and Regional San to test model consistency in timing and magnitude. As a final step to improve this consistency in the region of the Mokelumne River split, the Cosumnes River inflow was increased by 50 cfs (see Figure 5) – this change was felt reasonable as a reliable downstream measurement of Cosumnes River flow was not available.

Modeled EC for the final RMA11 simulation (Name: ECTest.M5V3F2) was compared to measured EC data in several ways. In addition to the downloaded EC timeseries data shown in shown in Figure 21 through Figure 23, USGS point EC data measurements from their high frequency data acquisition on September 09, 10 and 11, 2019 were used to compare named model output locations to these GPS data locations. USGS data was plotted in Google Earth, and the data measurement times and locations were compared to the corresponding model output locations. These results are compiled in an EXCEL file (USGS.highfreqEC.vs.modelEC.xlsx). For each day, an example figure is included to illustrate the methodology.

Data from Regional San's transect data acquisition on September 11th 2019 was analyzed at named locations (see Figure 24) and EC data plotted (file MG. Transect.regsan.analysis.xlsx). This data was used in two ways to "ground truth" the calibrated RMA11 EC model. For selected locations, the difference between the modeled EC at the EC measurement time was calculated. In these 20 locations, the difference between the values ranged between -5.8 and 4.2 mS/cm (file Compare.rmamodelEC.regsan.transect.xls). Also, the volumetric percentages by source at selected named locations was multiplied by the boundary condition ECs to check the reliability of the volumetric measurements (File: RMA.ECandVolume.regsan.data.Calculations.xlsx).

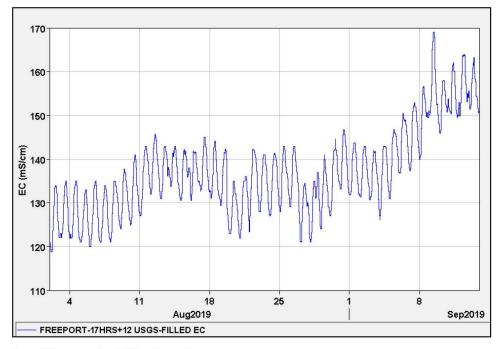
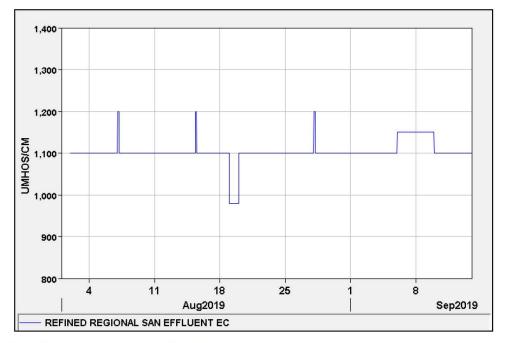
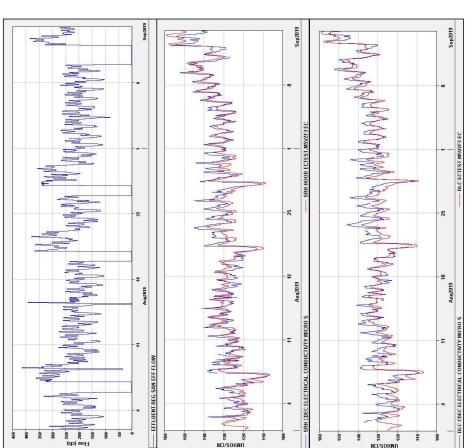
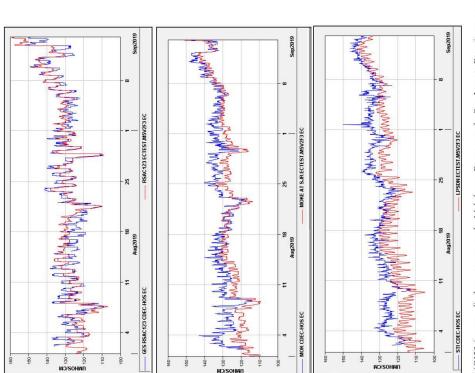
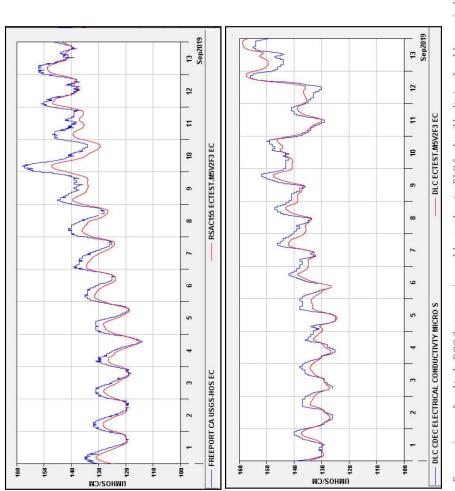


Figure 19 Sacramento River EC boundary condition.


Figure 20 Regional San effluent EC boundary condition.

Volumetric Simulation Results

Volumetric modeling output was calculated using the RMA11 transport application with updated dispersion parameters described in the previous section on RMA11 dispersion calibration. The volumetric simulations were set as follows:

- 1. The boundary conditions for the American and Sacramento Rivers were combined and set to 100.
- 2. The boundary conditions for the Mokelumne and Cosumnes Rivers were combined and set to 100.
- The boundary condition for Regional San was set to 100 note that Regional San inflow was stopped for 2 days during the experiment, so there was no contribution during this period.

Model output from each of these three simulations gives the volumetric percentage, which is also interpreted as the mixing percentage, of each of the combined sources at downstream locations. Time series of the numerical output is provided at selected project measurement locations is include in figures below. Figure 24 shows the locations specified by Regional San, while Figure 25 and Figure 26 show these output locations in screen captures of the RMA grid. A separate EXCEL file with model output time series results at all locations is included with project documentation (Name: VOLUMETRIC.OUTPUT.xls). A portion of the model output for a single source is shown in the Appendix (page 66).

Figure 27 shows the downstream location MOKEM is tidally influenced in the model, with the majority source alternating between the combined Mokelumne-Cosumnes source and the combined Sacramento-American source. Figure 28 shows that a small percentage of Regional San effluent tidally mixes with Sacramento-American source at the RSAC155/Freeport location, while a somewhat larger percentage is present at the SREM location in Figure 29.

Mixing on the South Fork Mokelumne was complicated and heavily influenced by tidal period as shown in Figure 30 and Figure 31. In Figure 30. The mixture at the SMR location on the south fork of the Mokelumne is dominated by alternating between the Sacramento-American or Mokelumne-Cosumnes sources with a minor contribution from Regional San effluent. Three locations (left, center and right) across the river at this location with a two-dimensional grid are shown to have variable mixing percentages from the three sources in Figure 31.

Figure 32 shows the variation in the three separate inflow sources at NMR on the north fork of the Mokelumne River. Figure 33 shows the change in tidal signature for the three sources at SMR and SFM4, from north to south along the south fork of the Mokelumne River. Figure 34 shows the shift from north to south along Georgiana Slough, from GS1 to GS4, presents primarily as a shift in timing.

The volumetric output from the three-combined-source volumetric transport model was used to perform an inter-model compression of the two RMA11 transport models EC model boundary condition EC to test the validity of the source percentages calculated in the volumetric models. Using model output at six named locations (see Figure 24), the three modeled percent volumes at that location and time were used along with the associated boundary condition EC to calculate

the corresponding EC to compare with the measured data. In each case, the modeled EC and the EC calculated with volumetric percentage and boundary condition EC matched within 2 mS/cm, as expected.

NOTE: Three animations were prepared showing modeled volumetric percentages for each combined source during the study period – a color scale is used to visualize the percentage spatially and time-specific values are shown at selected locations. These animations were used to QA/QC the volumetric models and used during project meetings to assist in the interpretation of tidal influences on source mixtures during the study period. The animations are included separately as deliverables. Images of the initial time stamp for the three animations are illustrated in the Appendix (page 67, Figure 48 through Figure 50).

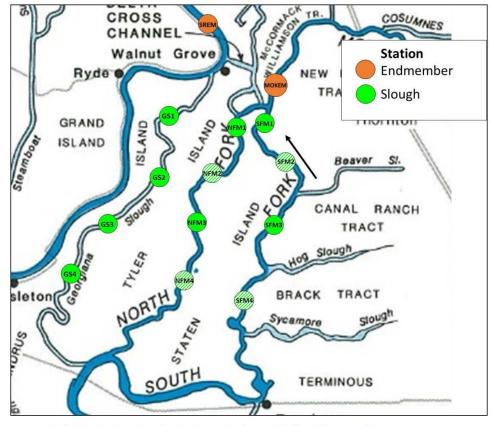


Figure 24 Model output locations for volumetric time series – figure supplied by staff at Regional San.

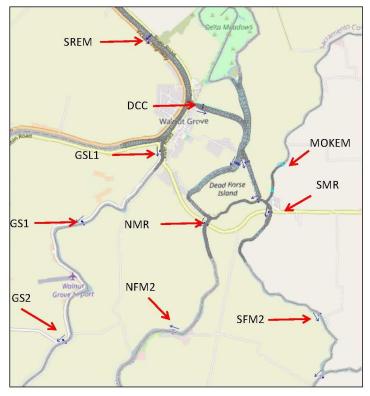


Figure 25 Nomenclature and location for particle tracking and volumetric output in upper portion of study area.

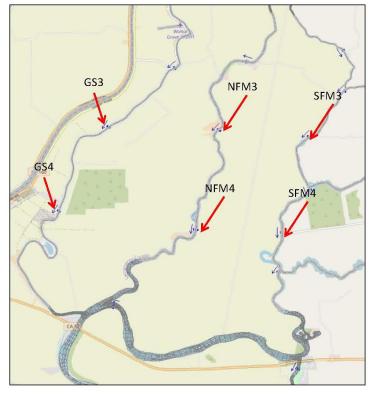


Figure 26 Nomenclature and location for particle tracking and volumetric output in lower portion of study area.

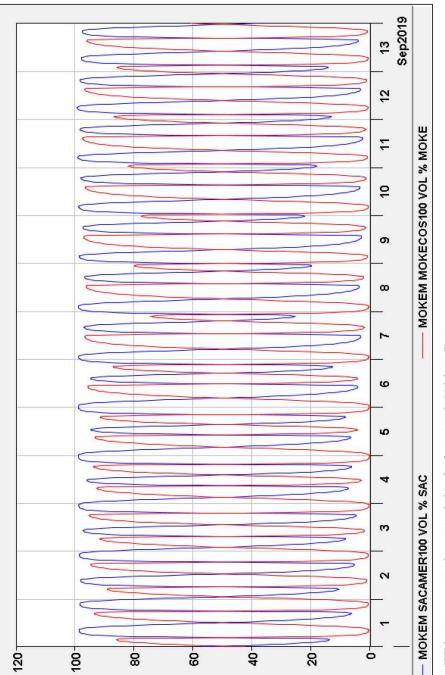
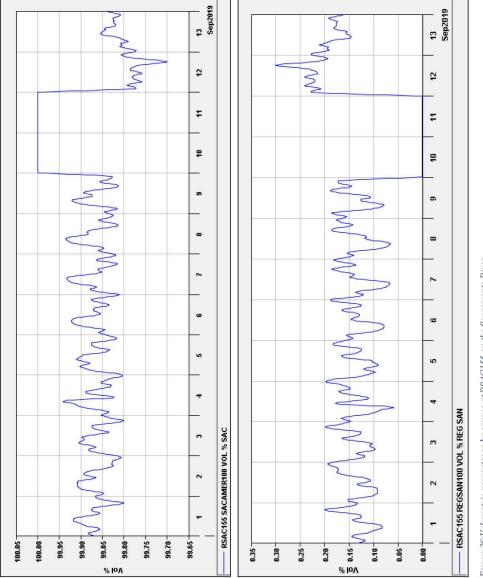



Figure 27 Volumetric percentages by source at the boundary location on the Mokelumne River

41

% |**0**/\

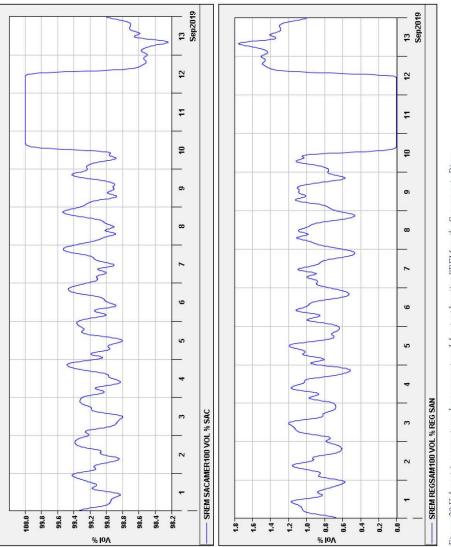
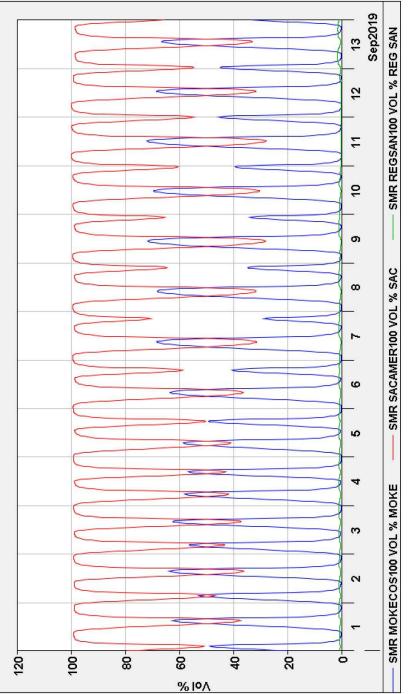



Figure 29 Volumetric percentages by source at model output location SREM on the Sacramento River.

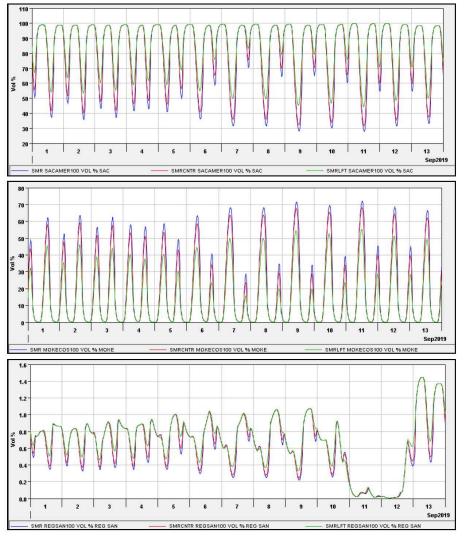


Figure 31 Volumetric percentages of the three sources at model output location SMR on the South Fork of the Mokelumne River illustrating variation across the river in transect.

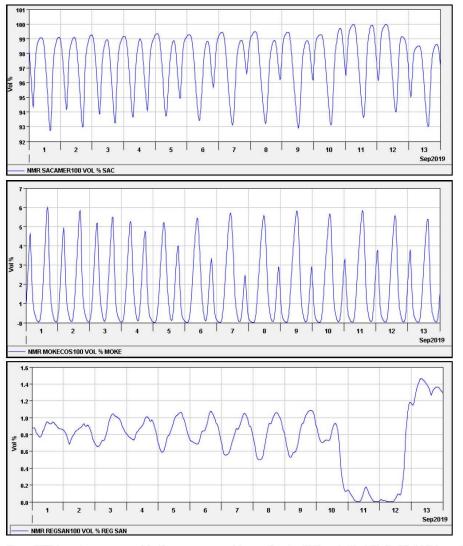


Figure 32 Volumetric percentages of the three sources at model output location NMR on the North Fork of the Mokelumne River illustrating variation across the river in transect.

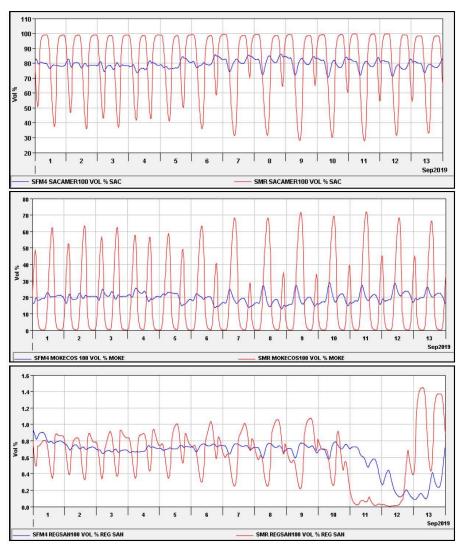
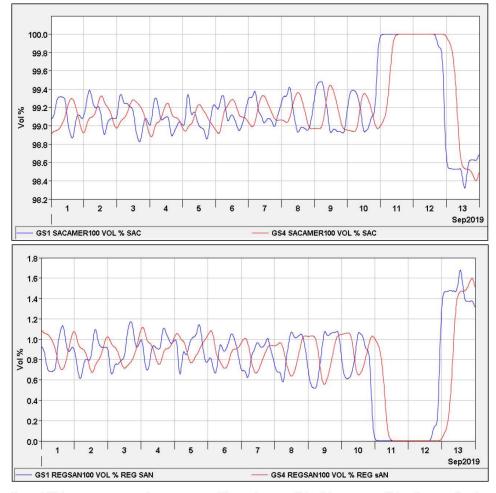



Figure 33 Volumetric percentages of the three sources at model output locations SMR and downstream at SFM4 on the South Fork of the Mokelumne River illustrating variation from north to south down the river.

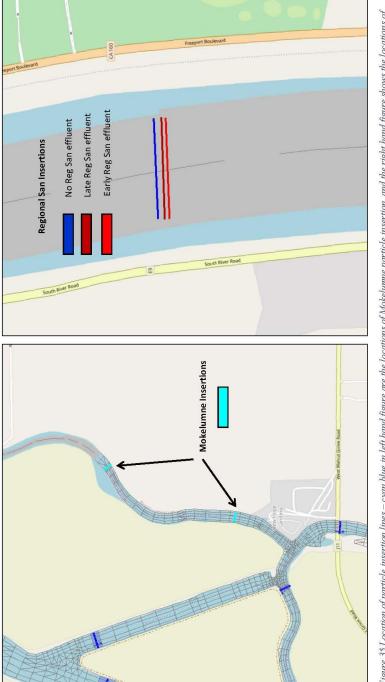
 $\label{eq:Figure 34 Volumetric percentages of two sources at model output locations GS1 and downstream at GS4 on Georgiana Slough illustrating variation from north (GS1) to south (GS4) down the slough.$

Section 5 Particle Tracking Simulations

Using the flow model developed for the study period described above (Section 3), particle tracking simulations and animations were developed to help characterize the movement and mixing of water parcels during the study. The RMA particle tracking code used the output of the RMA2 flow model in its calculations. In general, dispersion values for the particle tracking simulations are set by the user. For this study, no dispersion values were set for the particle tracking as dispersion settings developed during the EC calibration indicated a level of complexity beyond any attempt for justification in particle tracking. Output from particle tracking simulations is used by the project participants to assist in the interpretations of sample measurements. Two animations were prepared emphasizing aspects of the flow dynamics using the procedure described below. These animations are included in a separate PowerPoint file as part of RMA's project deliverables. Images of the initial time stamp for the two animations are illustrated in the Appendix (page 70, Figure 51 and Figure 52). Additional documentation for the particle tracking and animation setups are also found in the Appendix (page 72, Figure 53 and Figure 54).

Three particle sources of different colors were inserted in the model grid near the location of the Regional San effluent outflow location (Figure 35, right hand figure), each of which inserted 100 particles/minute during portions of the simulation period (02 - 13 September, 2019). Particles numbers do NOT represent any flow or load criterion – instead these values were selected to make visualizations understandable/comprehensible and so have no physical significance. Bright red particles represent Sacramento River water parcels which include Regional San effluent before the shutdown (i.e., insertion stopped when the effluent flow stopped), bright blue particles represent Sacramento River water parcels without Regional San effluent ONLY during the effluent flow shutdown, and darker red particles represent Sacramento River water parcels which include Regional San effluent before the shutdown.

Cyan particles represent water parcels originating from the Mokelumne River – they were inserted at a rate of 4 particles/minute at the downstream insertion location and 1 particle/minute at an upstream location on the Mokelumne River (Figure 35, left hand figure). Using two locations improved the quality of the visualizations but had no other significance.


Figure 25 and Figure 26 identify the locations where particle arrivals for each of the four sources were counted. Note that in all of the following figures documenting particle travel through the model grid (Figure 36 through Figure 42), particle counts have no physical meaning – they simply represent timing of water parcels originating at one of the three Sacramento River sources. Figure 36 documents that water parcels originating in the Mokelumne River do not reach Georgiana Slough or the North Fork of the Mokelumne River. Figure 37 documents Sacramento River water parcels from the three sources arriving at location SREM on the Sacramento River above the DCC. Figure 38 documents these parcels arriving at the upstream and downstream locations on Georgiana Slough; Figure 39 and Figure 40 documents these parcels arriving at four locations on the North Fork Mokelumne River; and, Figure 41and Figure 42 documents these parcels arriving at four locations on the South Fork Mokelumne River.

Sacramento River Nutrient Change Study – Final Report

Table 1 provides documentation of the arrival time of particles released into the Sacramento River near the Regional San effluent outflow location for particles representing water parcels without effluent and parcels when effluent flow restarts.

Release Location	No Reg San	Reg San Late
Release Time	10 Sep. 00:00	9/12/2020 1:00
Arrival Location	Arrival Time	Arrival Time
SREM	10 Sep 19, 13:30	12 Sep 19, 14:15
GS1	10 Sep 19, 19:45	12 Sep 19, 19:30
GS4	11 Sep 19, 06:45	13 Sep 19, 06:30
NFM1	10 Sep 19, 18:00	12 Sep 19, 18:00
NFM2	10 Sep 19, 20:30	12 Sep 19, 21:30
NFM3	10 Sep 19, 23:00	12 Sep 19, 24:00
NFM4	11 Sep 19, 05:45	13 Sep 19, 06:30
SFM1	10 Sep 19, 19:15	12 Sep 19, 20:30
SFM2	10 Sep 19, 22:45	13 Sep 19, 00:15
SFM3	11 Sep 19, 07:30	13 Sep 19, 09:00
SFM4	11 Sep 19, 20:15	13 Sep 19, 13:30

Table 1 Arrival Time for Two Particle Release Locations near Regional San Effluent Outflow Location

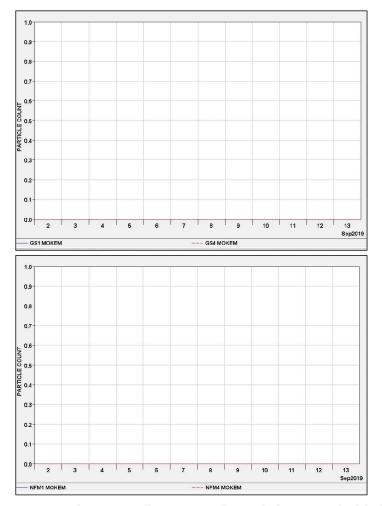


Figure 36 Particles originating at the MOKEM source do not reach either Georgiana Slough (top figure) of the North Forth of the Mokelumne River (lower figure).

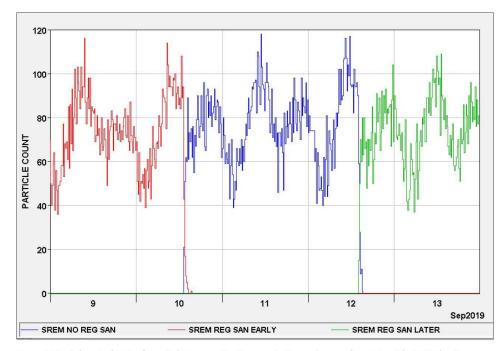


Figure 37 Particle arrival timing for particles representing Sacramento River water parcels arriving at the SREM location. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

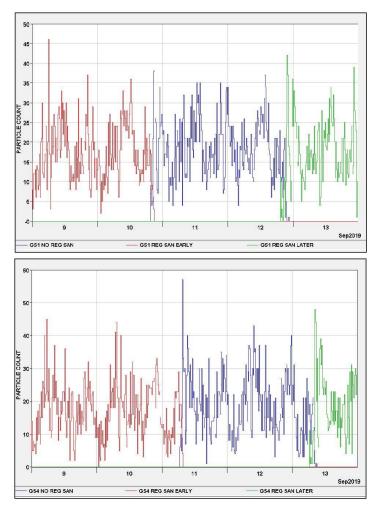


Figure 38 Particle arrival timing for particles representing Sacramento River water parcels arriving at the GS1 (upper figure) and GS4 (lower figure) locations. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

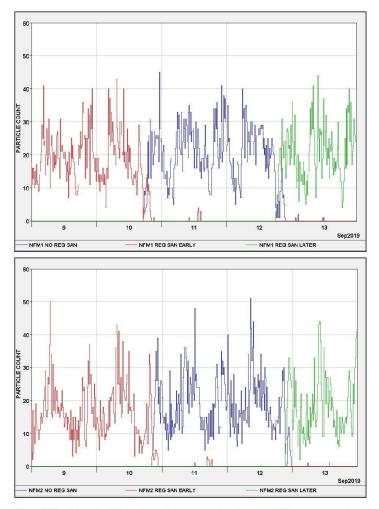


Figure 39 Particle arrival timing for particles representing Sacramento River water parcels arriving at the NFM1 (upper figure) and NFM2 (lower figure) locations. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

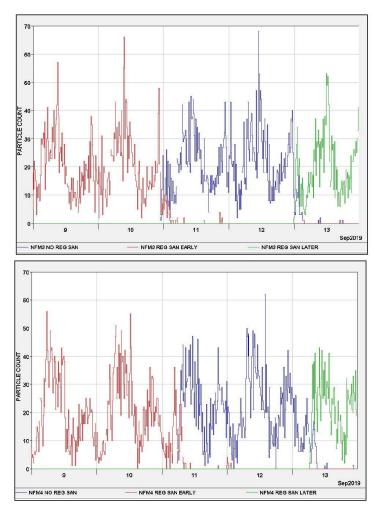


Figure 40 Particle arrival timing for particles representing Sacramento River water parcels arriving at the NFM3 (upper figure) and NFM4 (lower figure) locations. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

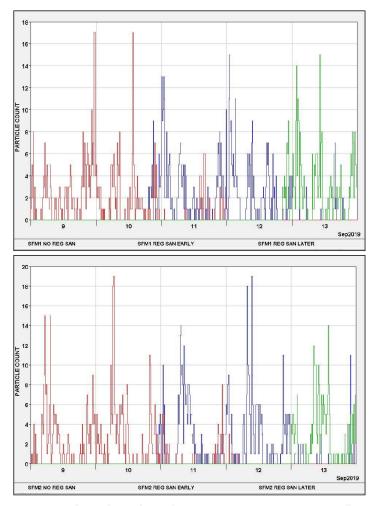


Figure 41 Particle arrival timing for particles representing Sacramento River water parcels arriving at the SFM1 (upper figure) and SFM2 (lower figure) locations. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

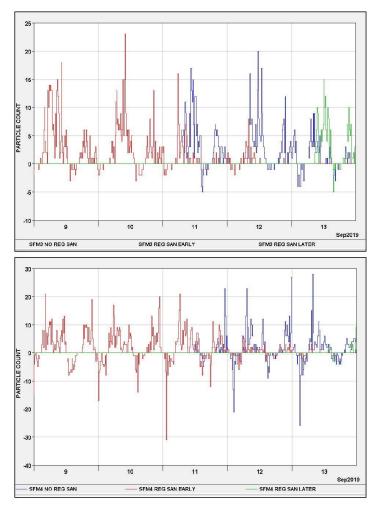


Figure 42 Particle arrival timing for particles representing Sacramento River water parcels arriving at the SFM3 (upper figure) and SFM4 (lower figure) locations. Particle counts have no physical meaning as particle insertion values were designed for ease of visual interpretation.

Section 6 Summary of Results

Sources of Uncertainty in the Transport Model Simulations

Challenges encountered during the calibration of the RMA11 EC model dispersion parameters highlighted the unfortunate loss of the North Fork and South Fork Mokelumne River flow, stage and EC monitoring stations east of the Delta Cross Channel during the 2017 winter season. Without the 15-minute time series for flow, stage and EC data from these stations, the July-September 2019 project simulations are at a loss to estimate the accuracy of the tidal timing, flow magnitude or EC along the two forks of the Mokelumne River. As noted in Section 2, the dynamics of the South Fork Mokelumne (SMF) inter-tidal flow are characterized by intricate peaks and troughs during the 2016 calibration period. During this initial calibration period, flow station plots show the model phase is in advance of the observed flow phase, with the modeled phase several minutes advanced with respect to the field measured flow.

Because of this missing data during the 2019 study period, our expectation that the timing difference between model and project EC data measurements would be offset, in our case, by an unknown quantity on the order of minutes to hours was in fact observed. The timing difference of modeled EC in RMA11 in comparison with USGS high frequency field data was generally observed to be at most several hours, and on the order of an hour or less when comparing model output to the Regional San transect EC measurements.

At the split of the Mokelumne into North and South forks, the USGS data measurements were not accurately resolved in the model grid. However, assuming the two-dimensional grid only partially captured the physical detail, the model output was sensible if the simplified resolution represented partial mixing of the sources. At the downstream end of the South Fork of the Mokelumne, it appeared that Little Potato Slough influenced the modeled EC to a greater extent than expressed by the USGS data measurements.

Analysis and Findings

Analysis of the Volumetric and Particle Tracking simulations yielded similar results. The modeling clearly captured that the North Fork of the Mokelumne River was sourced from a tidally influenced mixture of the Sacramento River, Regional San effluent and the Mokelumne River under the flow conditions during the project period September 09 -12, 2019. Georgiana Slough didn't experience any inflow from the Mokelumne source as expected, so mixing was relatively simple and travel times of the water parcels were short.

Unlike the North Fork, the South Fork of the Mokelumne was a complex mixture of the three sources with long travel times for water parcels as compared to the North Fork. Tidal influences along the South Fork became muted as water parcels progressed downstream. The effect of the three side sloughs was complex, with water parcels from the sources mixing in the sloughs. The plus and minus wastewater parcels moved in and out of the sloughs, mixing together during the study period. Model output along with the USGS data suggests the side sloughs are potential sources of constituents including EC.

Regional San implemented a data acquisition scheme that included the needs of the transport model calibration – this joint approach clearly improved the accuracy of the transport modeling during the project period in 2019. Data from the USGS high frequency sampling September 09 – 12, 2019 proved to be very important in setting and calibrating dispersion parameters in the study area, while the Regional San grab sample measurements provided invaluable validation data for the calibration.

Appendix

Additional Flow Locations for the Calibration and Project Periods

In Figure 43, the flow calibration results are shown at CDEC station LPS in Little Potato Slough. For comparison, the results for flow and tidally averaged flow at this station before and during the project period in 2019 are shown in Figure 44. Similarly, the calibration results and results before and during the project period at CDEC location MOK in the Mokelumne River at the San Joaquin River, are shown in Figure 45 and Figure 46, respectively.

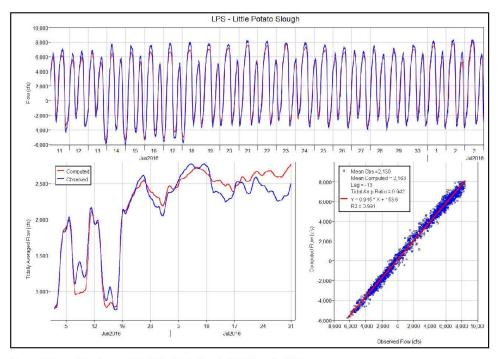


Figure 43 Flow calibration results in Little Potato Slough, CDEC location LPS.

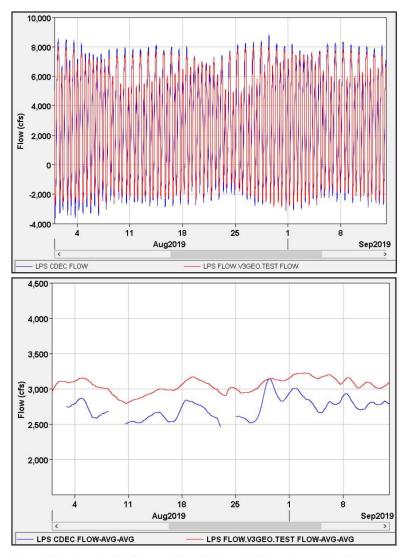


Figure 44 Flow (upper) and tidally averaged flow (lower) results of the project period model at Little Potato Slough.

Figure 45 Flow calibration results in the Mokelumne River at the San Joaquin River, CDEC location MOK.

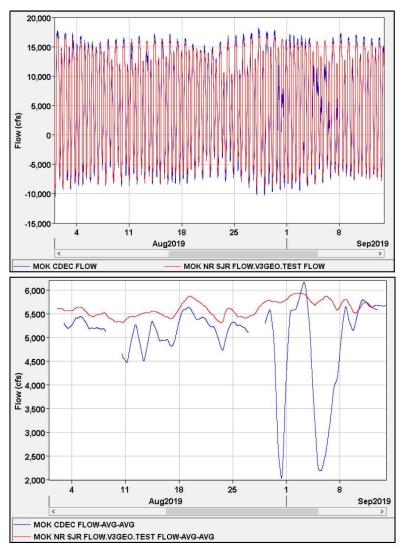


Figure 46 Flow (upper) and tidally averaged flow (lower) results of the project period model in the Mokelumne River at the San Joaquin River. Unexplained data departures in the flow data resulted in large deviations in the tidally averaged flow.

Volumetric Output Example

Volumetric percentage output for the three sources was compiled into an EXCEL file for each of the stations identified by the project in the model domain. Figure 47 shows several lines of this output for the Mokelumne source at several locations. The Mokelumne source was composed of the combined flow from the Mokelumne and Cosumnes Rivers.

	RMA11	RMA11	RMA11	RMA11	RMA11	RMA11	RMA11	RMA11	RMA11
	GS1	GS2	GS3	GS4	NFM3	NFM4	NFM2	NMR	SREM
VoL	% MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE	VOL % MOKE
MOK	ECOS1001	MOKECOS100	MOKECOS100	MOKECOS100	MOKECOS100	KECOS100 MOKECOS100 MOKECOS100 MOKECOS100 MOKECOS100 MOKECOS100 MOKECOS100 MOKECOS100	MOKECOS100	MOKECOS100	MOKECOS100
	Vol %	% IoV	Vol %	Vol %	Vol %	Vol %	Vol %	Vol %	Vol %
	INST-VAL	INST-VAL	INST-VAL	INST-VAL	INST-VAL	INST-VAL	INST-VAL	INST-VAL	INST-VAL
01Sep2019 0015	0.000	0.000	0.000	0.000	1.205	1.515	0.133	0.754	000.0
01Sep2019 0030	0.000	0.000		000.0	1.048	1.595	0.105	0.982	000.0
01Sep2019 0045	0.000	0.000	0.000	0.000	0.896	1.648	0.083	1.237	000.0
01Sep2019 0100	0.000	0.000	0.000	0.000	0.756	1.672	0.066	1.516	000.00
01Sep2019 0115	0.000	0.000	0.000	0.000	0.630	1.664	0.055	1.815	000.00
01Sep2019 0130	0.000	0.000	000 0	000.0	0.520	1.627	0.049	2.133	000.00
01Sep2019 0145	0.000	0.000	0.000	0.000	0.426	1.564	0.050	2.463	000.00
01Sep2019 0200	0.000	0.000	0.000	0.000	0.348	1.482	0.057	2.807	0.000
01Sep2019 0215	0.000	0.000	0.000	0.000	0.283	1.386	0.071	3.163	0.000
01Sep2019 0230	0.000	0.000	000 0	000.0	0.232	1.287	0.094	3.530	000.00
01Sep2019 0245	0.000	0.000	0.000	0.000	0.192	1.193	0.125	3.893	0.000
01Sep2019 0300	0.000	0.000	0.000	0.000	0.162	1.110	0.164	4.212	000.00
01Sep2019 0315	0.000	0.000	0.000	000.0	0.141	1.038	0.209	4.439	000.00
01Sep2019 0330	0.000	0.000	000.0	0.000	0.125	0.974	0.257	4.635	000.00
01Sep2019 0345	0.000	0.000	0.000	0.000	0.113	0.918	0.306	4.423	0.000

Figure 47 Example of EXCEL file timeseries output for Mokelumne volumetric percent results for several stations in the model domain.

Animations of Volumetric Percentages

Three animations were prepared to visualize the volumetric percentages in RMA grid for a portion of the study period – the initial frame of each of the animations is shown in Figure 48 through Figure 50. The area covers the DCC, the two branches of the Mokelumne River, portion of the side sloughs to the South Fork Mokelumne, and a portion of Georgiana Slough. Numerical values illustrating the changes in volumetric percentage as the animations progress were included.

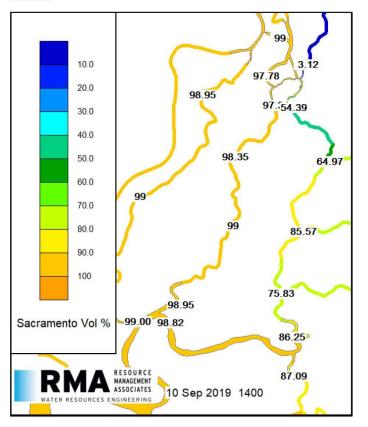


Figure 48 Initial frame of the Sacramento Volume % animation (File: SRINCS.RMA.Sac.Volume.animation.pptx).

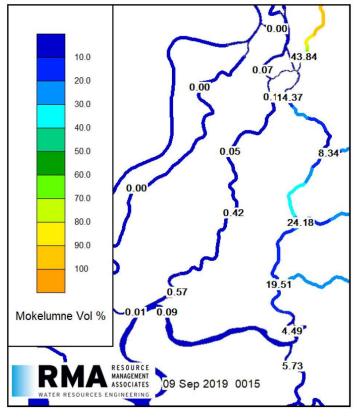


Figure 49 Initial frame of the Mokelumne Volume % animation (File: SRiNCS.RMA.Moke.Volume.animation.pptx.

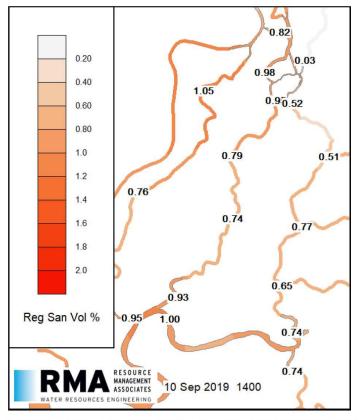


Figure 50 Initial frame of the Regional San Volume % animation (File: SRiNCS.RMA.RegSan.Volume.animation.pptx.

Particle Tracking Output and Animations

In addition to an EXCEL file with time series output sent to Regional San (PTM.NoRegSanEffluentParticleCount.xlsx) and an explanatory file with images (PTM.Images.NoEffluent.PDF), two animations at different spatial scales were prepared to illustrate the movement of water parcels conceptualized as particles in the RMA particle tracking model. The initial time stamp of these animations are shown in Figure 51 and Figure 52. Explanatory information is included in Figure 53and Figure 54.

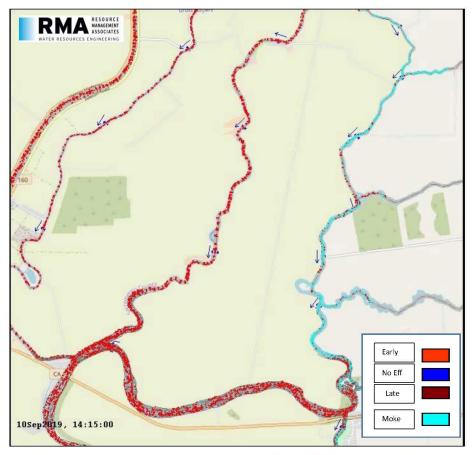


Figure 51 Initial frame of the larger scale particle tracking animation (File: SRINCS.PTM.LrgScale.RegSanFinal.pptx).

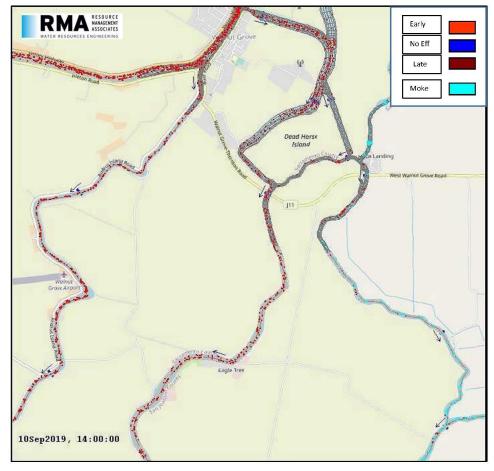


Figure 52 Initial frame of the smaller scale particle tracking animation (File: SRiNCS.PTM.SmlScale.RegSanFinal.pptx).

Configure 035EP2019 145EP2019 145EP2019 250 025EP2019 1381 Pelay (ms): 250 105EP2019 135EP2019, 21:30:00 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Forward Delay (ms): 250 East Formard Delay Martine East Formard Delay (ms): 250 East Formard Delay Martine East Formard Delay Martine Mard Delay		1				×	~					1			
145EP2019 145EP2019 145EP2019 145EP2019 105EP2019 21:30:00 115EP2019 21:30:01	Conf	igure							🖌 Animati	on Delays		×			
Image: Setting and Settin	02SI	EP201	6			14SEP201	0	<u>L</u>	lay Delay (r	us):		250			
I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 10SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019, 21:30:00 I0SEP2019 I0SEP2019, 21:00 I0SEP2019 I0SEP2019, 21:00 I0SEP8019 I0SEP2019, 21:00 I0SEP2019 I0SEP2019, 21:00 I0SEP8019 I0SEP2019, 21:00 I0SEP8019 I0SEP8019, 21:00 I0SEP8019 I0SEP8019, I0					+			Ű	ast Forward	t Delay (ms		250			
105EP2019, 21:30:00 105EP2019, 21:30:00 Drop Type Drop Type Drop Type Drop att once Drop att once Drop Everv. Drop Drop Everv. Drop Drop Everv. Drop Everv. Dr			<u> </u>	- +	191123			Ē	F Record P	lay Interval:		T			
Drop Type Drop all at once Drop Every Venticle Number of Lifetime Setting Date Time Start Date Start Time End Date Placement Placement Placement Placement Placement Rate Setting Drop Event. U 015EP2019 2400 135EP2019 2300 Disthb 4 00 00 Drop Event. U 015EP2019 2400 135EP2019 2300 Disthb 4 00 00 Drop Event. U 015EP2019 2400 135EP2019 2400 Disthb 4 00 Drop Event. U U15EP2019 2400 135EP2019 2400 135EP2019 2400 100			10SEP	2019, 21:30:0						Ж	Cance				
Drop Type Drop all at once Time Drop Every. Verticle Number of Number of Lifetime Setting Date Time Stat Date Stat Date Stat Time End Date Find Placement Placement <th></th> <th>×</th> <th></th>														×	
Drawn Drop Type Drop all at once Number of															
Image Date Time Start Date Start Time End Date Flacement Placement Placement Platement Platement </th <th>lec</th> <th>-</th> <th></th> <th>Drop all</th> <th>at once</th> <th></th> <th>Drop</th> <th>Every</th> <th></th> <th>Verticle</th> <th>Number of</th> <th></th> <th>Settling</th> <th>Color</th> <th></th>	lec	-		Drop all	at once		Drop	Every		Verticle	Number of		Settling	Color	
Drop Event V 015EP2019 2400 135EP2019 2400 Distrib V 4 0.0 Drop Event V 015EP2019 2400 035EP2019 2300 Distrib V 100 0.0 Drop Event V 0055EP2019 2300 155EP2019 2300 Distrib V 100 0.0 Drop Event V 115EP2019 2300 155FP2019 2400 0.0 0.0 Drop Event V 115EP2019 2400 Distrib V 100 0.0 Drop Event V 015EP2019 2400 Distrib V 100 0.0				Date	Time	Start Date	Start Time	End Date	End Time	Placement	Particles		Rate		
Drop Even V 015EP2019 2300 055thb V 100 00 Drop Even V 095EP2019 2300 015thb V 100 00 Drop Even V 115EP2019 2300 115FP2019 2400 055thb V 100 00 Drop Even V 115EP2019 2400 015thb V 100 00 Drop Even V 015EP2019 2400 155thb V 100 00	-	D				01SEP2019		13SEP2019	2400	Distrib ~	4	0.0	0.0		
Drog Ever. V 1095EP2019 2300 115EP2019 2400 Distrib. V 100 00 Drog Ever V 115EP2019 2400 155EP2019 2400 Distrib 100 00 Drog Ever V 015EP2019 2400 Distrib 100 00 Drog Ever V 015EP2019 2400 Distrib 100 00	-	Σ				01SEP2019	2400	09SEP2019	2300		100	0.0	0.0		
Drop Even V 11SEP2019 2400 13SEP2019 2400 Distrib V 100 0.0 Drop Even V 01SEP2019 2400 13SEP2019 2400 Distrib V 100 0.0	-	Σ				09SEP2019	2300	11SEP2019	2400		100	0.0	0.0		
Drop Every V 013EP2019 2400 133EP2019 2400 Distrib V 1 0.0	-	Σ				11SEP2019	2400	13SEP2019			100	0.0	0.0		
		Σ				01SEP2019	2400	13SEP2019			-	0.0	0.0		

Figure 53 Setup for the particle tracking models used as input to the animations in the RMA software.

Cancel

Ж

Appendix 3. RMA Depth Analysis Final Report and Bathymetric Maps

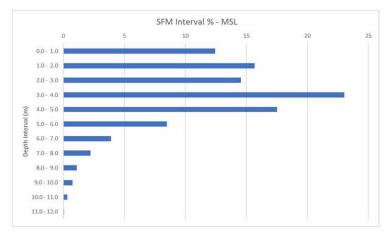
DRAFT

November 11, 2020

Prepared By: Resource Management Associates 1756 Picasso Avenue, Suite G Davis, CA 95618 Contact: Richard Rachiele 925-949-8960

INTRODUCTION

Depth histograms were developed for the four study reaches of the 2019 Sacramento River Nutrient Change Study. The depths were derived using the 2-meter DEM of the north Delta bathymetry developed by the California Dept. of Water Resources (DWR) (Figure 1). The RMA hydrodynamic model results performed for the September 2019 field study were processed to develop elevation surfaces of Mean Sea Level (MSL), MHHW and MLLW. The gridded bathymetry was subtracted from the model water surface elevations to produce 2m x 2m grids of water depth for the four study reaches (Figure 2 and Figure 3).


RESULTS

For each reach, the grid cells of depth were binned for 1 meter intervals of depth and tabulated. Below is an example of the table of areas for the depth intervals from the SFM and the histogram plots. The tables and plots are provided in Excel spreadsheet files.

DEM File	SFM_MSL_depth_d	lem.flt
NCOUNT	209187	
Depth Interval	Area (m2)	% Fraction
0.0 - 1.0	103976	12.4
1.0 - 2.0	131080	15.7
2.0 - 3.0	121808	14.6
3.0 - 4.0	192676	23.0
4.0 - 5.0	146628	17.5
5.0 - 6.0	70956	8.5
6.0 - 7.0	32572	3.9
7.0 - 8.0	18508	2.2
8.0 - 9.0	9140	1.1
9.0 - 10.0	6204	0.7
10.0 - 11.0	2712	0.3
11.0 - 12.0	488	0.1

Resource Management Associates, Inc.

In addition to the tables and histogram plots, the depth raster image files were exported to geotiff format:

Coordinate System: UTM meters zone 10.

Depth units: meters.

The geotiff files may be imported into GIS programs for display and analysis. An examples of the display are presented in Figure 4.

Resource Management Associates, Inc.

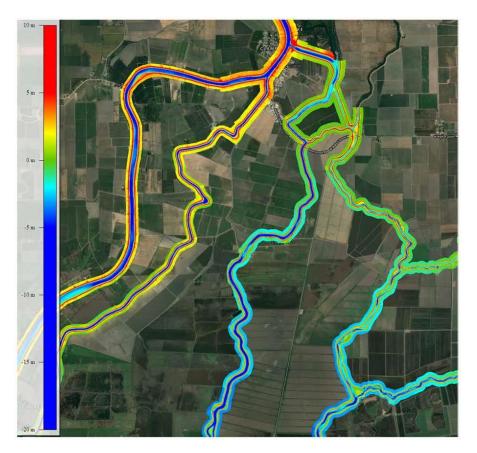


Figure 1 DWR 2-meter bathymetry DEM for the north Delta.

Resource Management Associates, Inc.

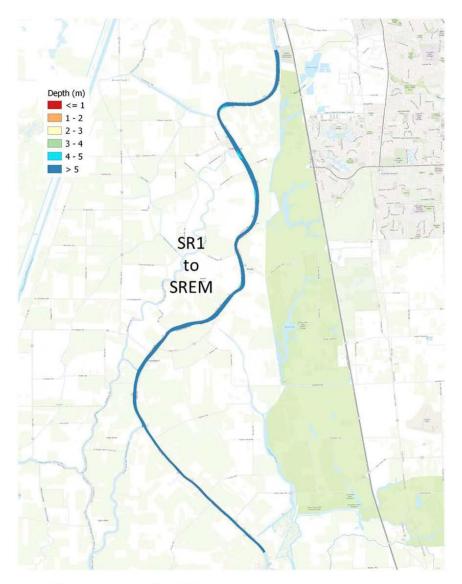
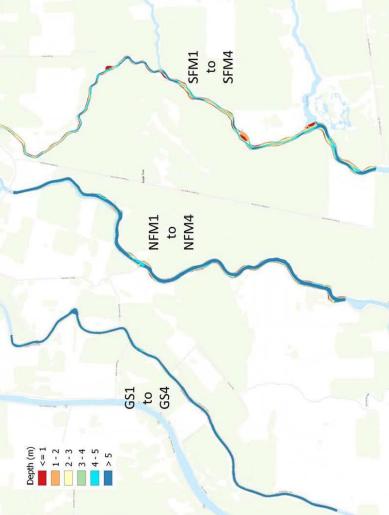
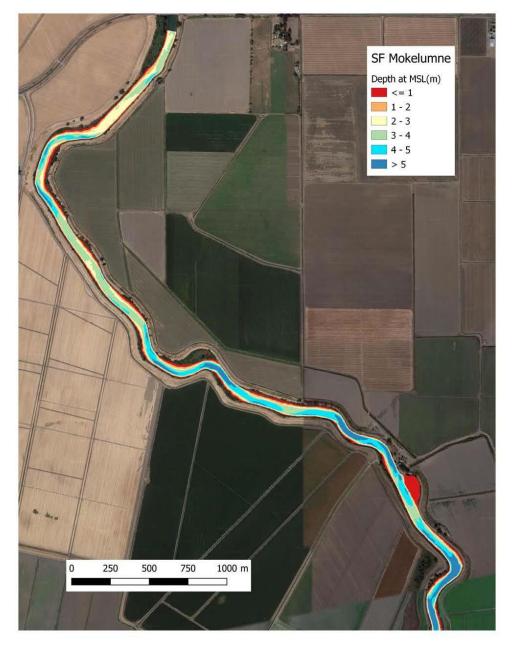
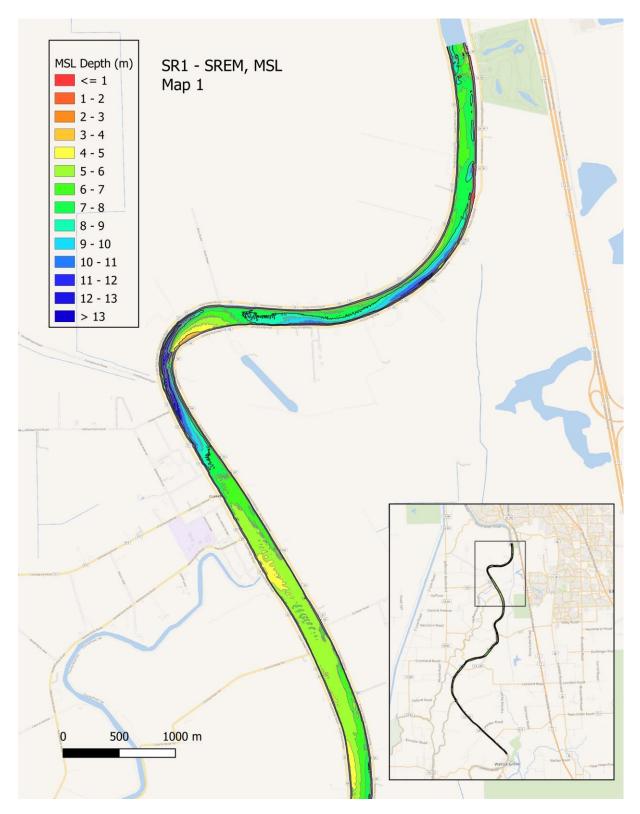
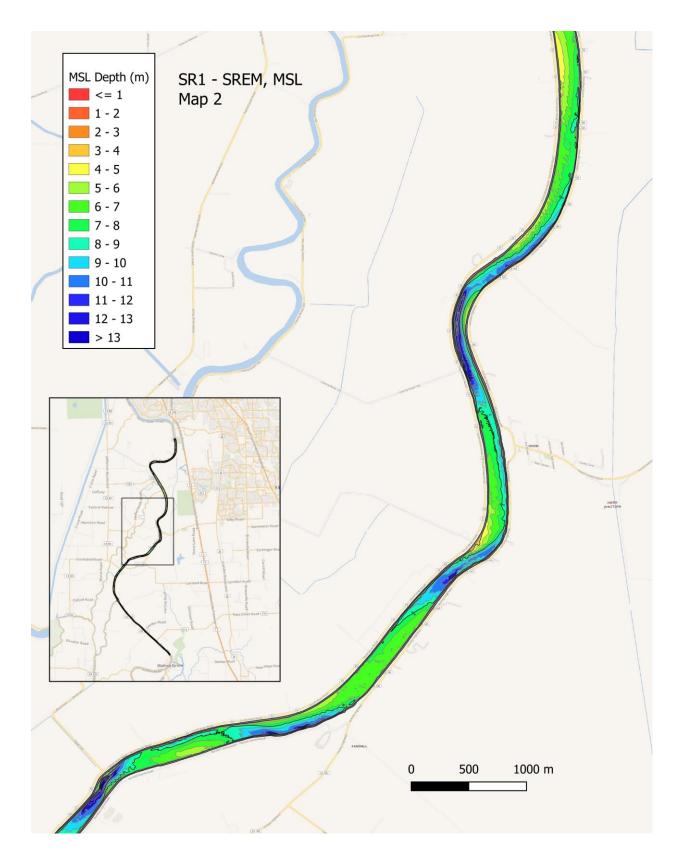
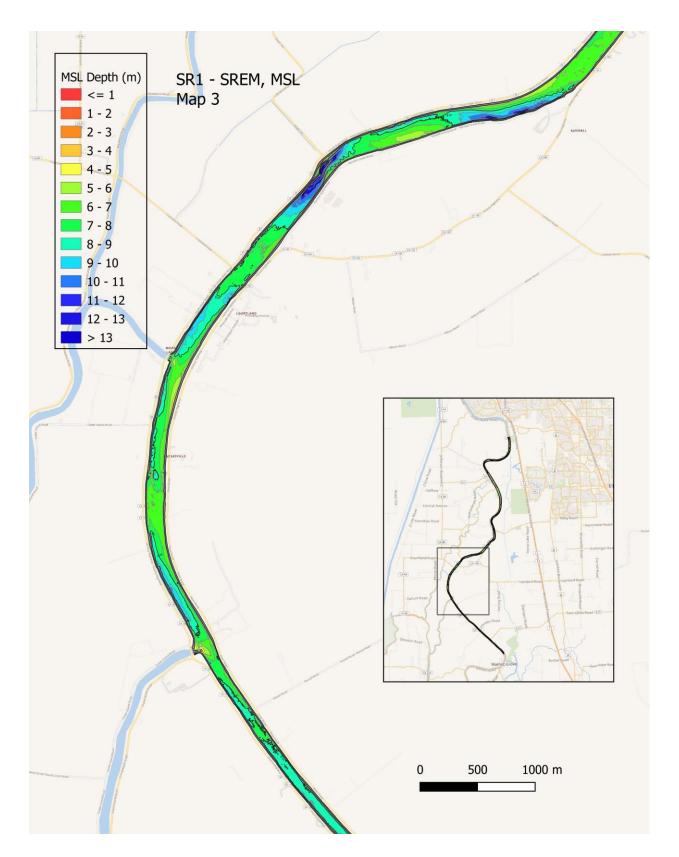



Figure 2 Depth coverage for the SR1 to SREM

Resource Management Associates, Inc.

Resource Management Associates, Inc.


Figure 4 Display of the geotiff depth file for the upper portion of the SFM.

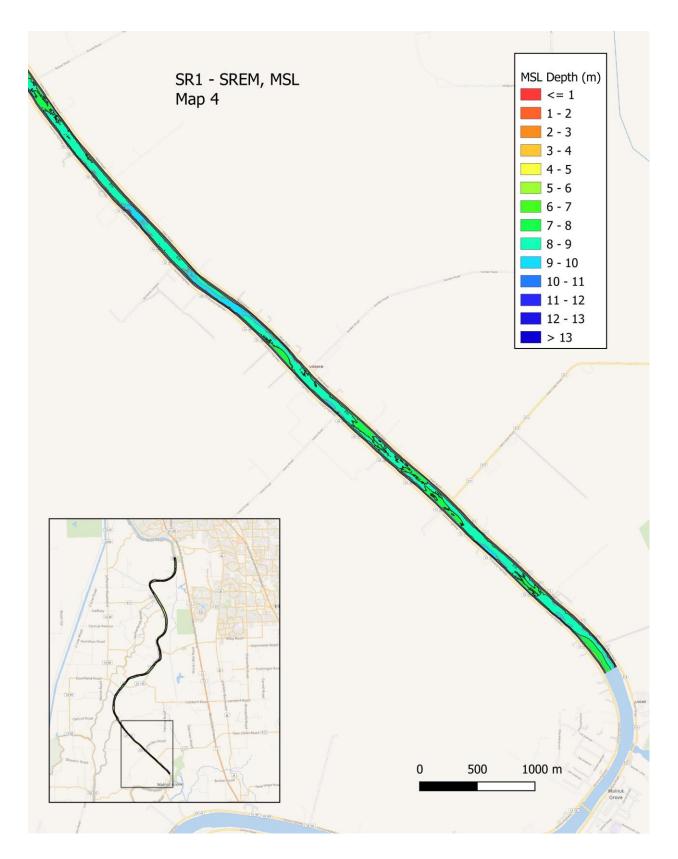
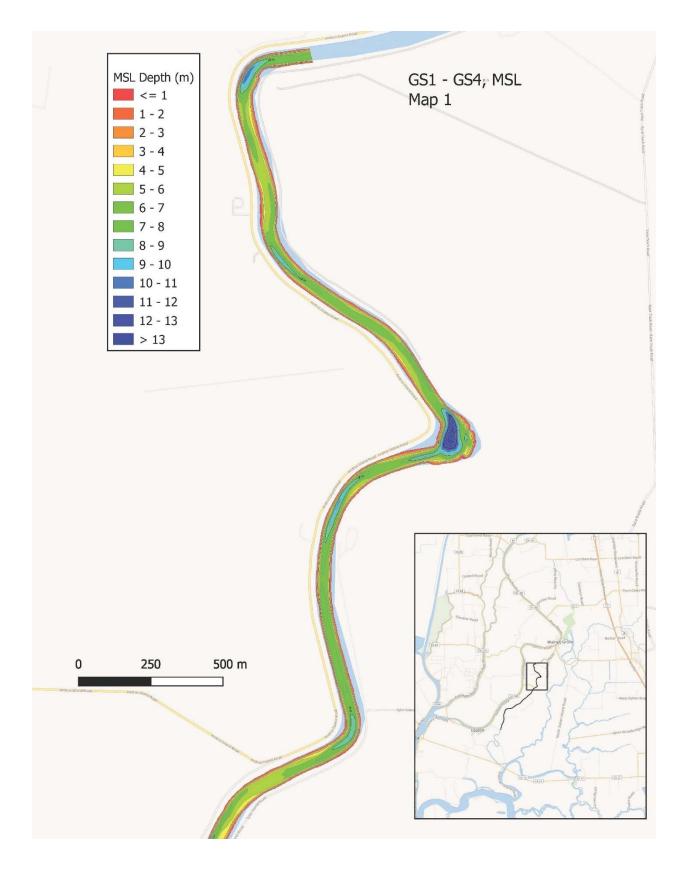
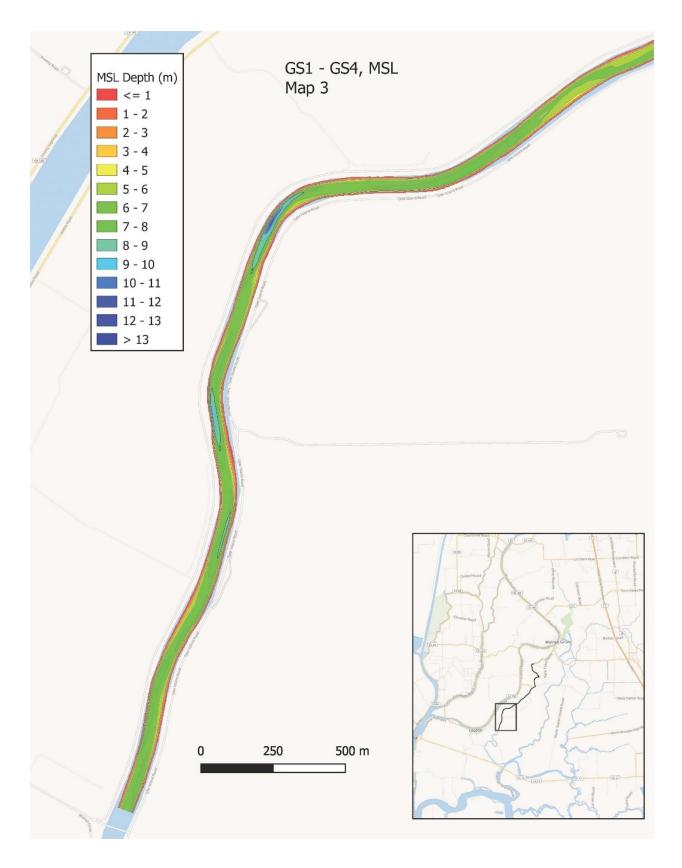
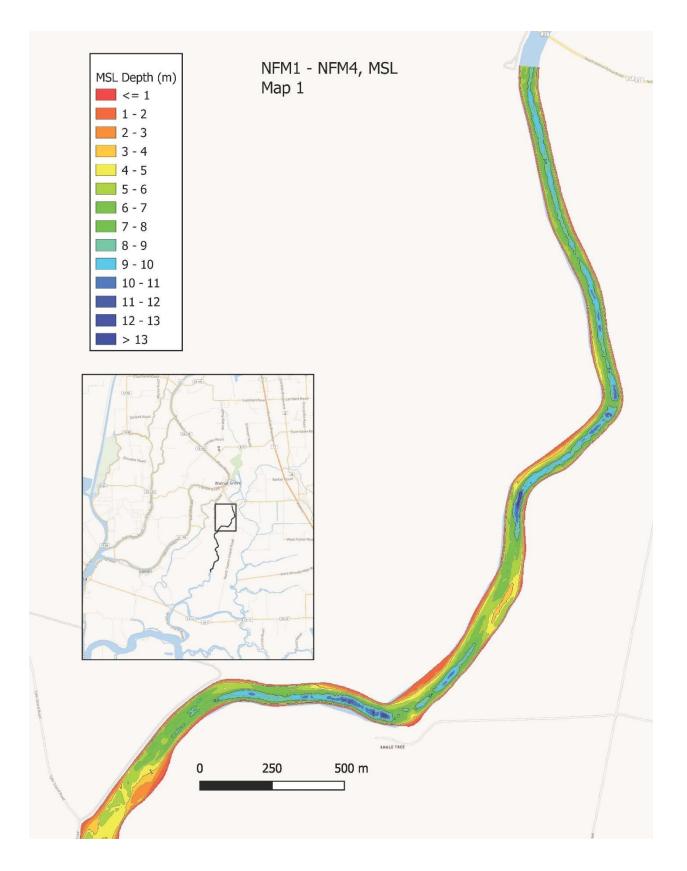

Resource Management Associates, Inc.

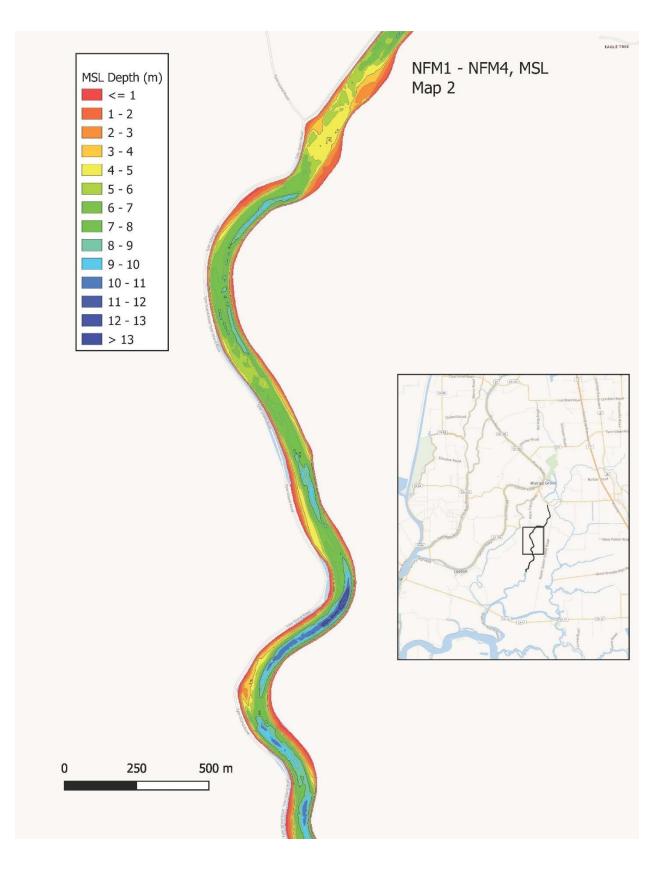
Figure 87. This page and twelve subsequent maps: Elevation surfaces at Mean Sea Level for our study area, divided into segments for the Sacramento River (SR), Georgiana Slough (GS), North Fork Mokelumne River (NFM), and South Fork Mokelumne River (SFM).

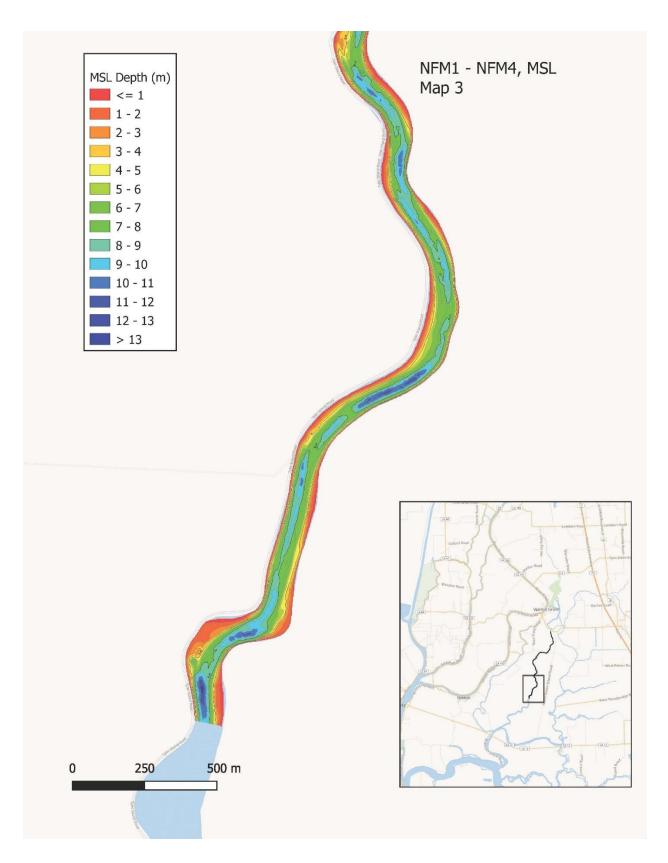


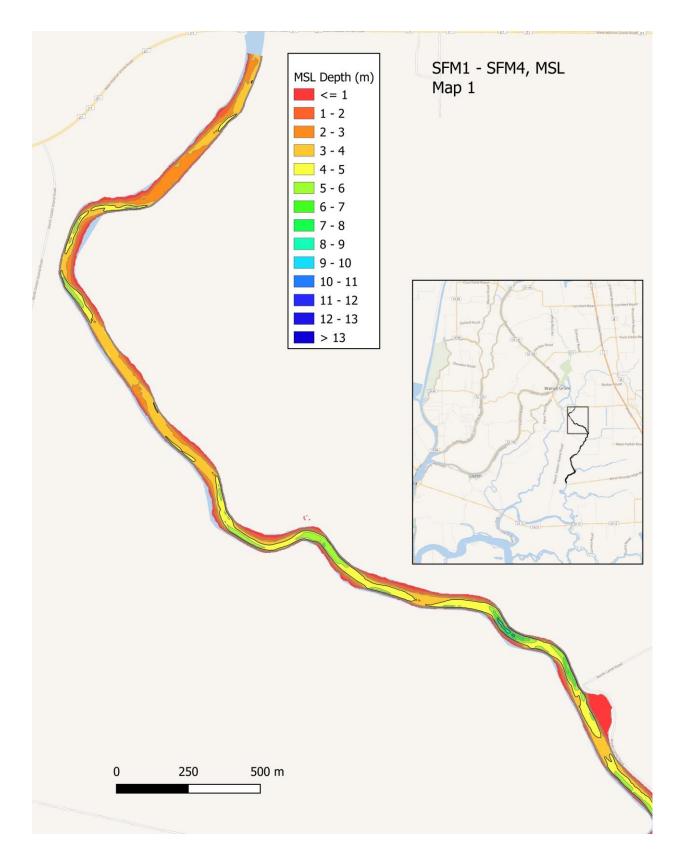


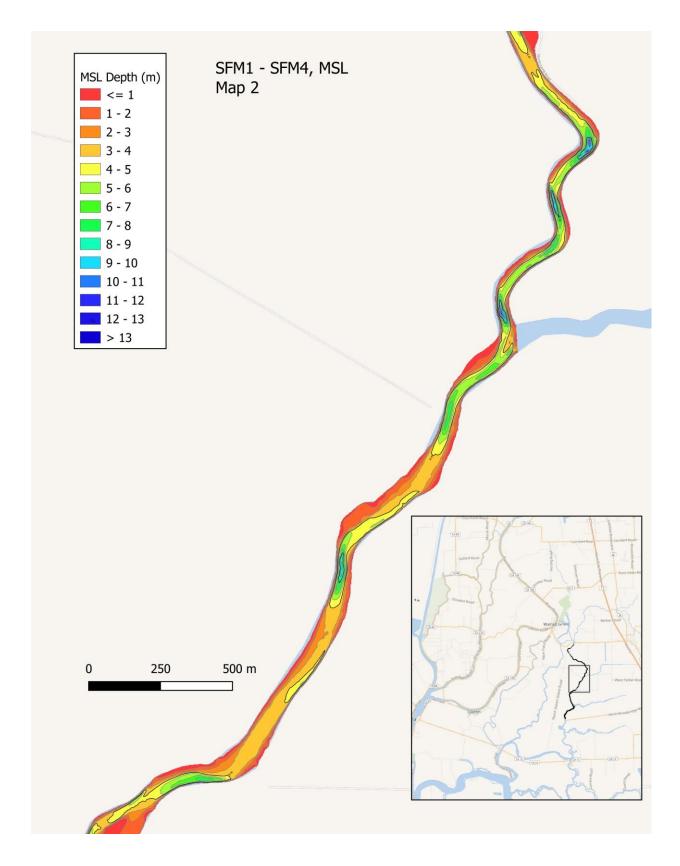


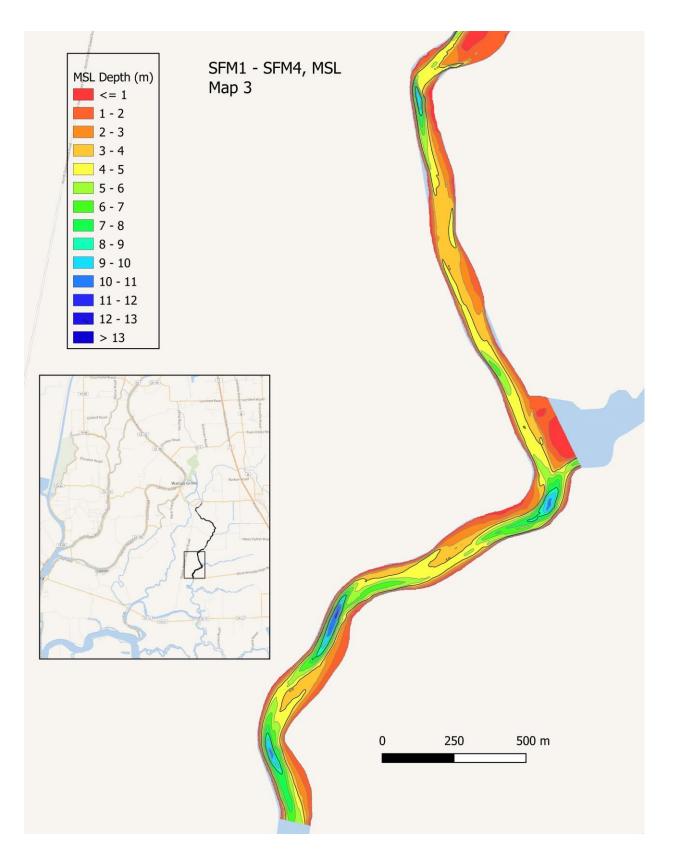


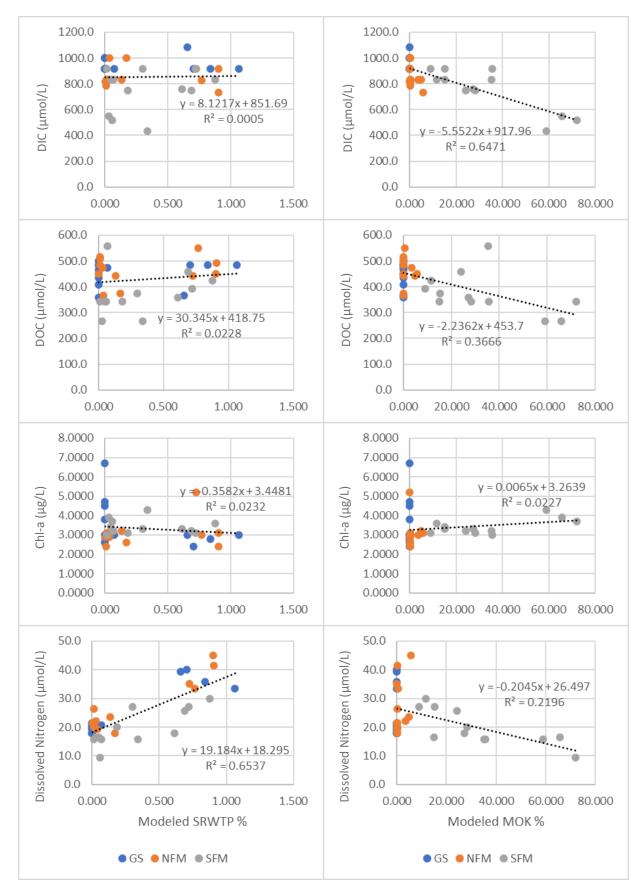

Sacramento River Nutrient Change Study – Final Report

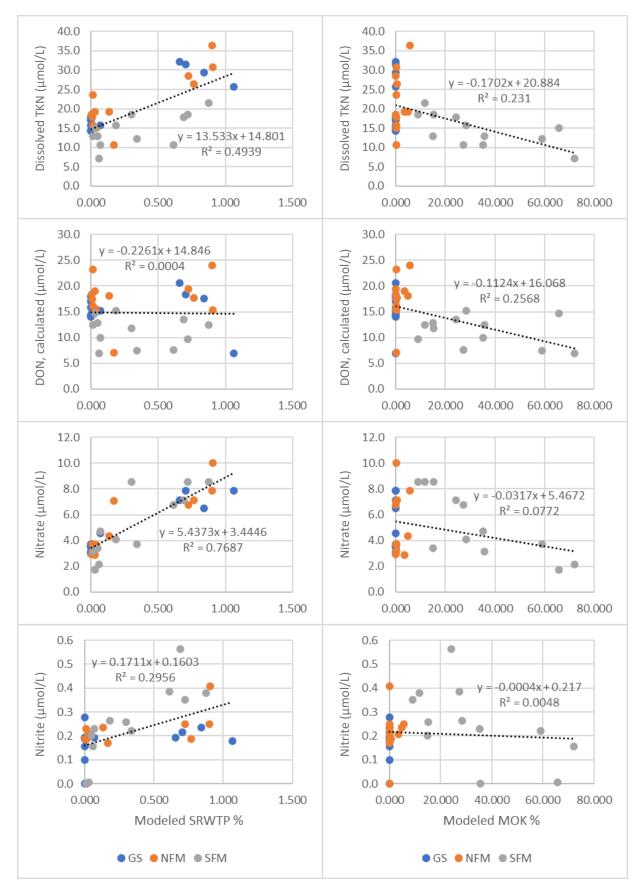


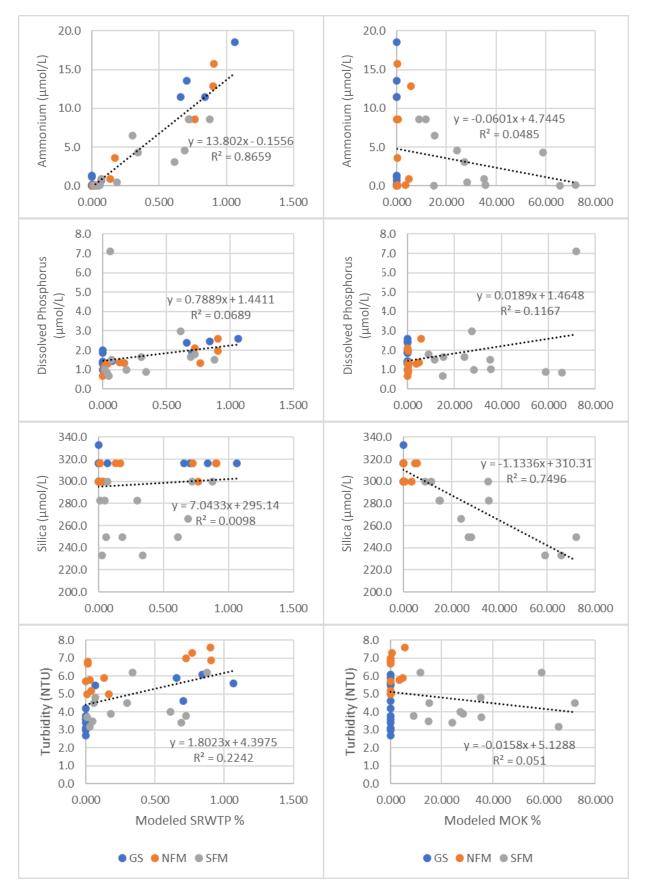












Appendix 4. Relationship of Modeled Water Fractions to Measured Water Quality Characteristics and Constituents

Appendix 5. Water-Quality Report of Laboratory Analysis

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

March 05, 2020

Lisa Thompson Regional San - Policy and Planning 10060 Goethe Road Sacramento, CA 95827

RE: Work Order No: 72538 Project ID: SRiNCS Study

Dear Lisa Thompson:

Enclosed are the analytical results for sample(s) received by the laboratory between Monday, September 09, 2019 and Thursday, September 12, 2019. Results reported herein conform to the most current ELAP standards, where applicable, unless otherwise noted in the body of the report.

As requested, this report has been revised to include values that fall below the calculated MDL's. The results for those analyses are not legally defensible and are only estimates.

As discussed, nitrite and nitrate analyses were performed outside of the holding times for regulatory samples, but were performed within the agreed upon holding time for this study. Results cannot be used for regulatory purposes.

This report is late. We apologize for any inconvenience this may have caused.

If you have any questions concerning this report, please feel free to contact me.

Sincercly, James Digitally signed by James Noss Date: 2020.03.10 14:55:10-07:00

James Noss Program Coordinator nossj@sacsewer.com

ce: Timothy Mussen

Justin Nordin Digitally signed by Justin Nordin Date: 2020.03.11 09:57:20 -07'00'

Justin Nordin QA Officer SrividhyaDigitally signed by
SrividhyaRamamoorthRamamoorthy
Date: 2020.03.13
08:54:57 -07'00'

Srividhya Ramamoorthy Lab Manager

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 1 of 93

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
1909100066	GS2	Surface Water	09/10/2019 11:52	09/10/2019 19:40
1909090046	SR1	Surface Water	09/09/2019 11:20	09/09/2019 17:10
1909100065	GS1	Surface Water	09/10/2019 12:48	09/10/2019 19:40
1909100067	GS3	Surface Water	09/10/2019 11:12	09/10/2019 19:40
1909100068	GS4	Surface Water	09/10/2019 10:30	09/10/2019 19:40
1909100069	SREM	Surface Water	09/10/2019 14:14	09/10/2019 19:40
1909100070	NFM1	Surface Water	09/10/2019 13:06	09/10/2019 19:40
1909100071	NFM2	Surface Water	09/10/2019 12:05	09/10/2019 19:40
1909100072	NFM3	Surface Water	09/10/2019 11:06	09/10/2019 19:40
1909100073	NFM4	Surface Water	09/10/2019 09:45	09/10/2019 19:40
1909100074	SFM1	Surface Water	09/10/2019 14:18	09/10/2019 19:40
1909100075	SFM2	Surface Water	09/10/2019 13:00	09/10/2019 19:40
1909100076	SFM3	Surface Water	09/10/2019 11:45	09/10/2019 19:40
1909100077	SFM4	Surface Water	09/10/2019 10:00	09/10/2019 19:40
1909100078	MOKEM	Surface Water	09/10/2019 15:02	09/10/2019 19:40
1909100079	GS2	Surface Water	09/10/2019 11:52	09/10/2019 19:40
1909090005	SR1	Surface Water	09/09/2019 11:20	09/09/2019 17:10
1909090006	SR2	Surface Water	09/09/2019 12:16	09/09/2019 17:10
1909090007	SR3	Surface Water	09/09/2019 12:54	09/09/2019 17:10
1909090008	SREM	Surface Water	09/09/2019 13:42	09/09/2019 17:10
1909110059	GS1	Surface Water	09/11/2019 11:35	09/11/2019 15:30
1909110060	GS2	Surface Water	09/11/2019 11:00	09/11/2019 15:30
1909110061	GS3	Surface Water	09/11/2019 10:24	09/11/2019 15:30
1909110062	GS4	Surface Water	09/11/2019 09:49	09/11/2019 15:30
1909110063	SREM	Surface Water	09/11/2019 12:44	09/11/2019 15:30
1909110064	NFM1	Surface Water	09/11/2019 12:10	09/11/2019 15:30
1909110065	NFM2	Surface Water	09/11/2019 11:14	09/11/2019 15:30
1909110066	NFM3	Surface Water	09/11/2019 10:05	09/11/2019 15:30
1909110067	NFM4	Surface Water	09/11/2019 09:05	09/11/2019 15:30
1909110068	SFM1	Surface Water	09/11/2019 12:13	09/11/2019 15:30
1909110069	SFM2	Surface Water	09/11/2019 11:18	09/11/2019 15:30
1909110070	SFM3	Surface Water	09/11/2019 10:08	09/11/2019 15:30
1909110071	SFM4	Surface Water	09/11/2019 09:07	09/11/2019 15:30
1909110072	MOKEM	Surface Water	09/11/2019 12:58	09/11/2019 15:30
1909110073	NFM3	Surface Water	09/11/2019 10:05	09/11/2019 15:30

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 2 of 93

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

SAMPLE SUMMARY

Work Order No: Project ID:	72538 SRiNCS Study			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
1909120033	GS2	Surface Water	09/12/2019 10:38	09/12/2019 15:36
1909120034	GS3	Surface Water	09/12/2019 10:05	09/12/2019 15:36
1909120035	GS4	Surface Water	09/12/2019 09:30	09/12/2019 15:36
1909120036	SREM	Surface Water	09/12/2019 12:37	09/12/2019 15:36
1909120037	NFM1	Surface Water	09/12/2019 11:45	09/12/2019 15:36
1909120038	NFM2	Surface Water	09/12/2019 10:50	09/12/2019 15:36
1909120039	NFM3	Surface Water	09/12/2019 10:05	09/12/2019 15:36
1909120040	NFM4	Surface Water	09/12/2019 09:10	09/12/2019 15:36
1909120041	SFM1	Surface Water	09/12/2019 13:30	09/12/2019 15:36
1909120042	SFM2	Surface Water	09/12/2019 12:14	09/12/2019 15:36
1909120043	SFM3	Surface Water	09/12/2019 11:27	09/12/2019 15:36
1909120044	SFM4	Surface Water	09/12/2019 10:03	09/12/2019 15:36
1909120045	MOKEM	Surface Water	09/12/2019 13:20	09/12/2019 15:36
1909120032	GS1	Surface Water	09/12/2019 11:15	09/12/2019 15:36
1909120046	SFM4	Surface Water	09/12/2019 10:03	09/12/2019 15:36

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 3 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909090005 Sample ID: SR1	Date Coll Date Rec		9/2019 11:20 9/2019 17:10		Matrix:	Surface			
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	-
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0044	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0044	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	11	NTU	1	1.0	NA	09/09/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.12J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.047J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Diss(as P)	EPA 365.4	0.061J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],[
Dissolved Nitrogen as N	SM 4500-N	0.17	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	8.6	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.9	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	20,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909090006 Sample ID: SR2	Date Coll Date Rec		9/2019 12:16 9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0042	mg/L	1	0.00073	NA	09/12/2019	JTA	
chiorophyll 'a'	SM 10200 H	0.0041	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 4 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909090006 Sample ID: SR2	Date Col Date Rec		9/9/2019 12:16 9/9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	9.1	NTU	1	1.0	NA	09/09/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.24J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.42	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.066J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Diss(as P)	EPA 365.4	0.045J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],[
Dissolved Nitrogen as N	SM 4500-N	0.48	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.8	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.1	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	20,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909090007 Sample ID: SR3	Date Col Date Rec		9/9/2019 12:5 4 9/9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0039	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0043	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	8.6	NTU	1	1.0	NA	09/09/2019	JKN	
<u>GENERAL WET CHEMISTRY</u>									
Nitrogen,Ammonia(as N)	EPA 350.1	0.12J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 5 of 93 Print Date: 03/05/2020

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909090007 Sample ID: SR3	Date Coll Date Rec		0/9/2019 12:54 0/9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>GENERAL WET CHEMISTRY</u>									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.24	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.062J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0025J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.084J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2
Dissolved Nitrogen as N	SM 4500-N	0.31	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.0	mg/L	1	1.0	0.35	09/16/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	21,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909090008 Sample ID: SREM	Date Coll Date Rec)/9/2019 13:42)/9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0037	mg/L	1	0.00073	NA	09/12/2019	JTA	
	SM 10200 H	0.0036	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	01411020011								
chlorophyll 'a' <u>FIELD ANALYSIS</u>	SW 1020011								
	EPA 180.1	12	NTU	1	1.0	NA	09/09/2019	JKN	
FIELD ANALYSIS Turbidity(Field)		12	NTU	1	1.0	NA	09/09/2019	JKN	
FIELD ANALYSIS Turbidity(Field) GENERAL WET CHEMISTRY		12 0.27J	NTU mg/L	1	1.0 0.50	NA 0.0000010	09/09/2019 09/18/2019	JKN KDN	
FIELD ANALYSIS Turbidity(Field) GENERAL WET CHEMISTRY Nitrogen,Ammonia(as N)	EPA 180.1							KDN	
FIELD ANALYSIS	EPA 180.1 EPA 350.1	0.27J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 6 of 93

Print Date: 03/05/2020

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID: SRiNCS	Study								
Lab ID: 1909090008 Sample ID: SREM	Date Coll Date Rec		/9/2019 13:42 /9/2019 17:10		Matrix:	Surface	Water		2
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WET CHEMISTRY</u>									
Phosphorus,Diss(as P)	EPA 365.4	0.086J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2]
Dissolved Nitrogen as N	SM 4500-N	0.59	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.9	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.6	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	21,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909090046 Sample ID: SR1	Date Coll Date Rec		/9/2019 11:20 /9/2019 17:10		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.047J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.13J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.048J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Diss(as P)	EPA 365.4	0.031J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],
Dissolved Nitrogen as N	SM 4500-N	0.18	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.0	mg/L	1	1.0	NA	09/25/2019	SHA	
	SM 5310 B	7.6	mg/L	1	1.0	0.35	09/16/2019	SHA	
Carbon,Organic,Dissolved	SIM 3310 B	1.0							
Carbon,Organic,Dissolved <u>METALS</u>	30 33 10 5	1.0							

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 7 of 93

Print Date: 03/05/2020

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100065 Sample ID: GS1	Date Coll Date Rec		/10/2019 12:48 /10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.6	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.26J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.36	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.11	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0025J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[
Phosphorus,Diss(as P)	EPA 365.4	0.080J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2
Dissolved Nitrogen as N	SM 4500-N	0.47	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.8	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100066 Sample ID: GS2		Date Collected: 9/10/2019 11:52 Date Received: 9/10/2019 19:40			Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0028	mg/L	1	0.00073	NA	09/12/2019	JTA	
chiorophyll 'a'	SM 10200 H	0.0029	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 8 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100066 Sample ID: GS2	Date Col Date Rec		9/10/2019 11:52 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	6.1	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.16J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.41	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.091J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0033J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.076J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2
Dissolved Nitrogen as N	SM 4500-N	0.50	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.8	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100067 Sample ID: GS3	Date Col Date Rec		9/10/2019 11:12 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.9	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.16J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	Ē1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 9 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100067 Sample ID: GS3	Date Col Date Rec		0/10/2019 11:12 0/10/2019 19:40		Matrix:	Matrix: Surface Water			
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.45	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.10	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0027J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.074J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2]
Dissolved Nitrogen as N	SM 4500-N	0.55	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	13	mg/L	1	1.0	NA	09/16/2019	SHA	[8]
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	4.4	mg/L	1	1.0	0.35	09/16/2019	SHA	
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100068 Sample ID: GS4	Date Col Date Rec)/10/2019 10:30)/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0024	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0023	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
	EPA 180.1	4.6	NTU	1	1.0	NA	09/10/2019	JKN	
Turbidity(Field)	EFA 160.1								
Turbidity(Field) <u>GENERAL WET CHEMISTRY</u>	EFA 100.1								
GENERAL WET CHEMISTRY	EPA 350.1	0.19J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
<i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N)		0.19J 0.44	mg/L mg/L	1 1	0.50 0.20	0.0000010 0.070	09/18/2019 10/03/2019		
	EPA 350.1		100						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 10 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID:	SRINCS	Study								
Lab ID: Sample ID:	1909100068 GS4	Date Coll Date Rec		9/10/2019 10:30 9/10/2019 19:40		Matrix:	Surface	Water		
Pa	rameter	Method	Result	s Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL W</u>	<u>'ET CHEMISTRY</u>									
Phosphorus,E	Diss(as P)	EPA 365.4	0.058	J mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],[1]
Dissolved Nitr	rogen as N	SM 4500-N	0.56	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorga	anic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Orgar	nic,Dissolved	SM 5310 B	5.8	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>										
Silica(SiO2)		EPA 200.8	19,000) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: Sample ID:	1909100069 SREM	Date Coll Date Rec		9/10/2019 14:14 9/10/2019 19:40		Matrix:	Surface	Water		
Pa	rameter	Method	Result	s <u>Units</u>	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICA.	L									
chlorophyll 'a'		SM 10200 H	0.0032	2 mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'		SM 10200 H	0.0032	2 mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANAL	. <u>YSIS</u>									
Turbidity(Field	(t	EPA 180.1	4.4	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL W	<u>'ET CHEMISTRY</u>									
Nitrogen,Amn	nonia(as N)	EPA 350.1	0.13J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DIS	SSOLVED	EPA 351.2 (LowLevel)	0.35	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)		EPA 353.2	0.089	J mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)		EPA 353.2	0.0033	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,E	Diss(as P)	EPA 365.4	0.063	J mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],[1]
Dissolved Nite	rogen as N	SM 4500-N	0.44	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorga	anic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/25/2019	SHA	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 11 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100069 Sample ID: SREM	Date Coll Date Rec		9/10/2019 14:14 9/10/2019 19:40		Matrix:	atrix: Surface Water			
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	_
GENERAL WET CHEMISTRY									
Carbon,Organic,Dissolved	SM 5310 B	5.0	mg/L	1	1.0	0.35	09/16/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	19,000) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100070 Sample ID: NFM1	Date Coll Date Rec		9/10/2019 13:06 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0033	3 mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	7.6	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.18J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.51	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.11	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0035	J mg/L	1	0.10	0.000010	10/01/2019	KDN	μ
Phosphorus,Diss(as P)	EPA 365.4	0.080.	J mg/L	1	0.20	0.000010	10/09/2019	KDN	[2
Dissolved Nitrogen as N	SM 4500-N	0.63	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	8.8	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.4	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000) ug/L	1	120	54	10/23/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 12 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100070 Sample ID: NFM1	Date Col Date Rec		9/10/2019 13:06 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	_
Lab ID: 1909100071 Sample ID: NFM2	Date Col Date Rec		9/10/2019 12:05 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>		8			a 18	6 X			
chlorophyll 'a'	SM 10200 H	0.0030) mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0033	3 mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	7.3	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.12J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.37	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.10	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0026	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[]
Phosphorus,Diss(as P)	EPA 365.4	0.041	l mg/L	1	0.20	0.000010	10/03/2019	KDN	[]
Dissolved Nitrogen as N	SM 4500-N	0.47	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.9	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.6	mg/L	1	1.0	0.35	09/16/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	18,000) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100072 Sample ID: NFM3	Date Col Date Rec		9/10/2019 11:06 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 13 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

DF RL 1 0.00073 1 0.00073 1 0.00073 1 1.0 1 0.50 1 0.20 1 0.10 1 0.20	MDL NA NA NA 0.0000010 0.070 0.000010 0.000010 0.000010	Analyzed 09/12/2019 09/12/2019 09/10/2019 009/18/2019 10/03/2019 10/02/2019 10/01/2019 10/01/2019	JTA JKN KDN KDN KDN	[1
1 0.00073 1 1.0 1 0.50 1 0.20 1 0.10 1 0.20	NA NA 0.0000010 0.070 0.000010 0.000010	09/12/2019 09/10/2019 00/18/2019 10/03/2019 10/03/2019 10/01/2019	JTA JKN KDN KDN KDN	[3 [1
1 0.00073 1 1.0 1 0.50 1 0.20 1 0.10 1 0.20	NA NA 0.0000010 0.070 0.000010 0.000010	09/12/2019 09/10/2019 00/18/2019 10/03/2019 10/03/2019 10/01/2019	JTA JKN KDN KDN KDN	[3 [1
1 1.0 1 0.50 1 0.20 1 0.10 1 0.10 1 0.20	NA 0.0000010 0.070 0.000010 0.000010	09/10/2019 09/18/2019 10/03/2019 10/02/2019 10/01/2019	JKN KDN KDN KDN	[1
1 0.50 1 0.20 1 0.10 1 0.10 1 0.20	0.0000010 0.070 0.000010 0.000010	09/18/2019 10/03/2019 10/02/2019 10/01/2019	KDN KDN KDN	μ
1 0.50 1 0.20 1 0.10 1 0.10 1 0.20	0.0000010 0.070 0.000010 0.000010	09/18/2019 10/03/2019 10/02/2019 10/01/2019	KDN KDN KDN	μ
1 0.20 1 0.10 1 0.10 1 0.20	0.070 0.000010 0.000010	10/03/2019 10/02/2019 10/01/2019	KDN KDN KDN	μ
1 0.20 1 0.10 1 0.10 1 0.20	0.070 0.000010 0.000010	10/03/2019 10/02/2019 10/01/2019	KDN KDN KDN	μ
1 0.10 1 0.10 1 0.20	0.000010 0.000010	10/02/2019 10/01/2019	KDN KDN	
1 0.10 1 0.20	0.000010	10/01/2019	KDN	
1 0.20				
	0.000010	10/03/2019	KDN	
				[1
1 0.01	NA	10/23/2019	UFB	
1 1.0	NA	09/25/2019	SHA	
1 1.0	0.35	09/16/2019	SHA	
1 120	54	10/23/2019	NCH	
Matrix:	Surface Water			
	MDL	Analyzed	Ву	
1 0.00073	NA	09/12/2019	JTA	
1 0.00073	NA	09/12/2019	JTA	
1	0.00073	0.00073 NA	0.00073 NA 09/12/2019	0.00073 NA 09/12/2019 JTA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 14 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100073 Sample ID: NFM4	Date Col Date Rec		9/10/2019 09:45 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	6.9	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.22J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.43	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.14	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0057J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.061J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.58	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.9	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100074 Sample ID: SFM1	Date Col Date Rec		9/10/2019 14:18 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0034	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0036	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	6.2	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 15 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100074 Sample ID: SFM1	Date Col Date Rec		9/10/2019 14:18 9/10/2019 19:40		Matrix:	C Surface Water			
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>GENERAL WET CHEMISTRY</u>									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.30	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.12	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0053J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.047J	mg/L	1	0.20	0.000010	10/03/2019	KDN	Į1,
Dissolved Nitrogen as N	SM 4500-N	0.42	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/25/2019	SHA	
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	5.1	mg/L	1	1.0	0.35	09/16/2019	SHA	
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100075 Sample ID: SFM2			9/10/2019 13:00 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0044	mg/L	1	0.00073	NA	09/12/2019	JTA	
	SM 10200 H	0.0043	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'									
chlorophyll 'a' <u>FIELD ANALYSIS</u>									
	EPA 180.1	6.2	NTU	1	1.0	NA	09/10/2019	JKN	
FIELD ANALYSIS	EPA 180.1	6.2	NTU	1	1.0	NA	09/10/2019	JKN	
FIELD ANALYSIS Turbidity(Field) GENERAL WET CHEMISTRY	EPA 180.1 EPA 350.1	6.2 0.060J	NTU mg/L	1	1.0 0.50		09/10/2019		[1]
F <u>TELD ANALYSIS</u> Turbidity(Field) <u>GENERAL WET CHEMISTRY</u> Nitrogen,Ammonia(as N)									ſ1
FIELD ANALYSIS	EPA 350.1	0.060J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 16 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100075 Sample ID: SFM2	Date Col Date Rec		9/10/2019 13:00 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WET CHEMISTRY</u>									
Phosphorus,Diss(as P)	EPA 365.4	0.027J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1]
Dissolved Nitrogen as N	SM 4500-N	0.22	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	5.2	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	3.2	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	14,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100076 Sample ID: SFM3	Date Collected: Date Received:		9/10/2019 11:45 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0034	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.8	NTU	1	1.0	NA	09/10/2019	JKN	
<u>GENERAL WET CHEMISTRY</u>									
Nitrogen,Ammonia(as N)	EPA 350.1	0.12J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	μ
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.26	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.12	mg/L	1	0.10	0.000010	10/02/2019	KDN	
	EPA 353.2	0.0049J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Nime(as N)				1	0.20	0.000010	10/03/2019	KDN	11
an 1970 a su de cales - 2018 2019 a su de 1	EPA 365.4	0.055J	mg/L		0.20		10/00/2010		1.5
Nitrite(as N) Phosphorus,Diss(as P) Dissolved Nitrogen as N	EPA 365.4 SM 4500-N	0.055J 0.38	mg/∟	1	0.01	NA	10/23/2019	UFB	1-

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 17 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100076 Sample ID: SFM3	Date Col Date Rec		9/10/2019 11:45 9/10/2019 19:40		Matrix:	Surface			
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
GENERAL WET CHEMISTRY									
Carbon,Organic,Dissolved	SM 5310 B	4.7	mg/L	1	1.0	0.35	09/16/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909100077 Sample ID: SFM4	Date Col Date Rec		9/10/2019 10:00 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									-
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00073	NA	09/12/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00073	NA	09/12/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.4	NTU	1	1.0	NA	09/10/2019	JKN	
<u>GENERAL WET CHEMISTRY</u>									
Nitrogen,Ammonia(as N)	EPA 350.1	0.064J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.25	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.10	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0079.	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.051J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2],[
Dissolved Nitrogen as N	SM 4500-N	0.36	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.0	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.5	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	16,000	ug/L	1	120	54	10/23/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 18 of 93

Work Order No:

-

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100077 Sample ID: SFM4	Date Co Date Re		9/10/2019 10:00 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
Lab ID: 1909100078 Sample ID: MOKEM	Date Co Date Re		9/10/2019 15:02 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>		8			Q 18	G 2			
chlorophyll 'a'	SM 10200 H	0.0040	mg/L	1	0.00073	NA	09/12/2019	JTA	[3]
chlorophyll 'a'	SM 10200 H	0.0051	mg/L	1	0.00073	NA	09/12/2019	JTA	[3]
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	4.6	NTU	1	1.0	NA	09/10/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.10J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.35	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.11	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0041	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.070J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2]
Dissolved Nitrogen as N	SM 4500-N	0.46	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.1	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.2	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	17,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909100079 Sample ID: GS2	Date Co Date Re		9/10/2019 11:52 9/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 19 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909100079 Sample ID: GS2	Date Col Date Rec		0/10/2019 11:52 0/10/2019 19:40		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.16J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.35	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.091J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0027J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.12J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[2]
Dissolved Nitrogen as N	SM 4500-N	0.44	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorganic, Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.2	mg/L	1	1.0	0.35	09/16/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909110059 Sample ID: GS1	Date Col Date Rec)/11/2019 11:35)/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00073	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.8	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.20	mg/L	1	0.20	0.070	10/03/2019	KDN	
	EPA 353.2	0.049J	mg/L	1	0.10	0.000010	10/02/2019		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 20 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110059 Sample ID: GS1	Date Coll Date Rec		11/2019 11:35 11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
Nitrite(as N)	EPA 353.2	0.001 4 J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.031J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1]
Dissolved Nitrogen as N	SM 4500-N	0.25	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.3	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110060 Sample ID: GS2			11/2019 11:00 11/2019 15:30		Matrix: Surface Water				
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0038	mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0036	mg/L	1	0.00073	NA	09/24/2019	JTA	
<u>FIELD ANALYSIS</u>									
	EPA 180.1	2.7	NTU	1	1.0	NA	09/11/2019	JKN	
Turbidity(Field)	EPA 180.1	2.7	NTU	1	1.0	NA	09/11/2019	JKN	
Turbidity(Field) GENERAL WET CHEMISTRY	EPA 180.1 EPA 350.1	2.7 ND	NTU mg/L	1	1.0 0.50		09/11/2019 09/18/2019	JKN KDN	
Turbidity(Field) <i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N)									
Turbidity(Field) <i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N) TKN(as N)DISSOLVED	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN KDN	
Turbidity(Field) <i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N) TKN(as N)DISSOLVED Nitrate(as N)	EPA 350.1 EPA 351.2 (LowLevel)	ND 0.20	mg/L mg/L	1	0.50 0.20	0.0000010 0.070	09/18/2019 10/03/2019	KDN KDN KDN	[1]
<u>FTELD ANALYSIS</u> Turbidity(Field) <u>GENERAL WET CHEMISTRY</u> Nitrogen,Ammonia(as N) TKN(as N)DISSOLVED Nitrate(as N) Nitrile(as N) Phosphorus,Diss(as P)	EPA 350.1 EPA 351.2 (LowLevel) EPA 353.2	ND 0.20 0.049J	mg/L mg/L mg/L	1 1 1	0.50 0.20 0.10	0.0000010 0.070 0.000010	09/18/2019 10/03/2019 10/02/2019	KDN KDN KDN KDN	[1]

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 21 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

.ab ID: 1909110060 Sample ID: GS2	Date Coll Date Rec		9/11/2019 11:00 9/11/2019 15:30		Matrix:	Surface			
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u> JENERAL WET CHEMISTRY</u>									
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	5.4	mg/L	1	1.0	0.35	09/18/2019	SHA	
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
ab ID: 1909110061 Sample ID: GS3		Date Collected: S Date Received: S			Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0028	mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0029	mg/L	1	0.00073	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Furbidity(Field)	EPA 180.1	3.0	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
vitrogen,Ammonia(as N)	EPA 350.1	0.0031.	J mg/L	1	0.50	0.0000010	09/18/2019	KDN	ſ
KN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.21	mg/L	1	0.20	0.070	10/03/2019	KDN	
vitrate(as N)	EPA 353.2	0.049J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
vitrite(as N)	EPA 353.2	0.0026.	J mg/L	1	0.10	0.000010	10/01/2019	KDN	I
Phosphorus,Diss(as P)	EPA 365.4	0.041J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[
Dissolved Nitrogen as N	SM 4500-N	0.26	mg/L	1	0.01	NA	10/23/2019	UFB	
	SM 5310 B	11	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon, Inorganic, Dissolved									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 22 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

SRINCS	Study								
1909110061 GS3			9/11/2019 10:24 9/11/2019 15:30		Matrix:	Surface	Water		
ameter	Method	Results	units	DF	RL	MDL	Analyzed	Ву	_
	EPA 200.8	19,000) ug/L	1	120	54	10/23/2019	NCH	
1909110062 GS4			9/11/2019 09:49 9/11/2019 15:30		Matrix:	Surface	Water		
ameter	Method	Results	units	DF	RL	MDL	Analyzed	Ву	_
2									
	SM 10200 H	0.0030) mg/L	1	0.00073	NA	09/24/2019	JTA	
	SM 10200 H	0.0031	mg/L	1	0.00073	NA	09/24/2019	JTA	
<u>YSIS</u>									
)	EPA 180.1	5.5	NTU	1	1.0	NA	09/11/2019	JKN	
<u>ET CHEMISTRY</u>									
ionia(as N)	EPA 350.1	0.010J	l mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
SOLVED	EPA 351.2 (LowLevel)	0.22	mg/L	1	0.20	0.070	10/03/2019	KDN	
	EPA 353.2	0.064J	l mg/L	1	0.10	0.000010	10/02/2019	KDN	
	EPA 353.2	0.0027	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
iss(as P)	EPA 365.4	0.045J	l mg/L	1	0.20	0.000010	10/09/2019	KDN	[1
ogen as N	SM 4500-N	0.29	mg/L	1	0.01	NA	10/23/2019	UFB	
nic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/18/2019	SHA	
ic,Dissolved	SM 5310 B	5.7	mg/L	1	1.0	0.35	09/18/2019	SHA	
85									
	EPA 200.8	19,000) ug/L	1	120	54	10/23/2010	NCH	
	1909110061 GS3 ameter 1909110062 GS4 ameter c c c c c c c c c c c c c c c c c c c	GS3 Date Rec ameter Method EPA 200.8 1909110062 Date Col GS4 Date Rec ameter Method ameter Method ameter Method x SM 10200 H XSM 10200 H SM 10200 H XSX EPA 180.1 CT CHEMISTRY EPA 350.1 SOLVED EPA 351.2 (LowLevel) EPA 353.2 EPA 353.2 iss(as P) EPA 365.4 ogen as N SM 4500-N nic,Dissolved SM 5310 B ic,Dissolved SM 5310 B	1909110061 GS3Date Collected: Date Received:ameterMethodResultsEPA 200.819,0001909110062 GS4Date Collected: Date Received:ameterMethodResultsameterMethodResultsSM 10200 H0,0030SM 5310 L0,0030SM 5310 B11is, (as P)EPA 365.40,045Jopen as NSM 4500-N0,29nic, DissolvedSM 5310 B11ic, DissolvedSM 5310 B5,7	1909110061 GS3 Date Collected: 9/11/2019 10:24 9/11/2019 15:30 ameter Method Results Units EPA 200.8 19,000 ug/L 1909110062 Date Collected: 9/11/2019 09:49 0ate Received: 9/11/2019 09:49 09:11/2019 15:30 ameter Method Results Units ameter Method Results Units ameter Method Results Units SM 10200 H 0.0030 mg/L SM 10200 H 0.0031 mg/L YS/S EPA 180.1 5.5 NTU ST CHEMISTRY Units mg/L mg/L SOLVED EPA 353.2 0.064J mg/L EPA 353.2 0.004J mg/L EPA 353.2 0.0027J mg/L iss(as P) EPA 365.4 0.045J mg/L mg/L mg/L iss(as P) EPA 365.4 0.045J mg/L mg/L<	1909110061 GS3 Date Collected: Date Received: 9/11/2019 10.24 9/11/2019 15.30 ameter Method Results Units DF EPA 200.8 19,000 ug/L 1 1909110062 Date Collected: 9/11/2019 09.49 1 GS4 Date Collected: 9/11/2019 09.49 Date Received: 9/11/2019 15:30 ameter Method Results Units DF SM 10200 H 0.0030 mg/L 1 SM 10200 H 0.0031 mg/L 1 SOLVED EPA 351.2 (LowLevel) 0.22 mg/L 1 EPA 353.2 0.0027J	1909110061 GS3 Date Collected: 9/11/2019 10.24 Date Received: Matrix: ameter Method Results Units DF RL EPA 200.8 19,000 ug/L 1 120 1909110062 Date Collected: 9/11/2019 09:49 Matrix: GS4 Date Collected: 9/11/2019 15:30 Matrix: ameter Method Results Units DF RL ameter Method Results Units DF RL SM 10200 H 0.0030 mg/L 1 0.00073 SM 10200 H 0.0031 mg/L 1 0.00073 SM 10200 H 0.0031 mg/L 1 0.00073 SSM 10200 H 0.0031 mg/L 1 0.00073 SSM 10200 H 0.0031 mg/L 1 0.00073 SSOLVED EPA 350.1 0.010J mg/L 1 0.20 SOLVED EPA 351.2 (LowLevel) 0.22 mg/L 1 0.20	1909110061 GS3 Date Collected: 9/11/2019 10.24 Date Received: Matrix: Surface ameter Method Results Units DF RL MDL EPA 200.8 19,000 ug/L 1 120 54 1909110062 Date Collected: 9/11/2019 09.49 Date Received: Matrix: Surface GS4 Date Received: 9/11/2019 15:30 Matrix: Surface ameter Method Results Units DF RL MDL ameter Method Results Units DF RL MDL strace SM 10200 H 0.0030 mg/L 1 0.00073 NA SM 10200 H 0.0031 mg/L 1 0.00073 NA SM 10200 H 0.0031 mg/L 1 0.00073 NA SYS EPA 180.1 5.5 NTU 1 0.000073 NA SQLVED EPA 350.1 0.010J mg/L 1 0.20 0.000010 <td>1909110061 GS3 Date Collected: Date Received: 9/11/2019 10.24 9/11/2019 15.30 Matrix: Matrix: Surface Water ameter Method Results Units DF RL MDL Analyzed EPA 200.8 19,000 ug/L 1 120 54 10/23/2019 1909110062 Date Collected: 9/11/2019 09.49 Date Received: Matrix: Surface Water GS4 Date Collected: 9/11/2019 15:30 Matrix: Surface Water SM 10200 H 0.0030 mg/L 1 0.00073 NA 09/24/2019 SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXI SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L <</td> <td>1909110061 GS3 Date Collected: 9/11/2019 10.24 9/11/2019 15.30 Matrix: Surface Water ameter Method Results Units DF RL MDL Analyzed By EPA 200.8 19,000 ug/L 1 120 54 10/23/2019 NCH 1909110062 Date Collected: 9/11/2019 09.49 Matrix: Surface Water E 1909110062 Date Collected: 9/11/2019 15:30 Matrix: Surface Water E ameter Method Results Units DF RL MDL Analyzed By ameter Method Results Units DF RL MDL Analyzed By SM 10200 H 0.0030 mg/L 1 0.00073 NA 09/24/2019 JTA SXI SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 JTA SXIS D EPA 180.1 5.5 NTU 1 0.0000010 09</td>	1909110061 GS3 Date Collected: Date Received: 9/11/2019 10.24 9/11/2019 15.30 Matrix: Matrix: Surface Water ameter Method Results Units DF RL MDL Analyzed EPA 200.8 19,000 ug/L 1 120 54 10/23/2019 1909110062 Date Collected: 9/11/2019 09.49 Date Received: Matrix: Surface Water GS4 Date Collected: 9/11/2019 15:30 Matrix: Surface Water SM 10200 H 0.0030 mg/L 1 0.00073 NA 09/24/2019 SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXI SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 SXIS SM 10200 H 0.0031 mg/L <	1909110061 GS3 Date Collected: 9/11/2019 10.24 9/11/2019 15.30 Matrix: Surface Water ameter Method Results Units DF RL MDL Analyzed By EPA 200.8 19,000 ug/L 1 120 54 10/23/2019 NCH 1909110062 Date Collected: 9/11/2019 09.49 Matrix: Surface Water E 1909110062 Date Collected: 9/11/2019 15:30 Matrix: Surface Water E ameter Method Results Units DF RL MDL Analyzed By ameter Method Results Units DF RL MDL Analyzed By SM 10200 H 0.0030 mg/L 1 0.00073 NA 09/24/2019 JTA SXI SM 10200 H 0.0031 mg/L 1 0.00073 NA 09/24/2019 JTA SXIS D EPA 180.1 5.5 NTU 1 0.0000010 09

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 23 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110063 Sample ID: SREM	Date Col Date Rec		9/11/2019 12:44 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0034	mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00073	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.0	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.0010J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.10J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.046J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0034J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.029J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.15	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.3	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110064 Sample ID: NFM1	Date Col Date Rec		9/11/2019 12:10 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00071	NA	09/24/2019	JTA	
chiorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 24 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110064 Sample ID: NFM1	Date Col Date Rec		9/11/2019 12:10 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.9	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.013J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.27	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.061J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0033J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus, Diss(as P)	EPA 365.4	0.042J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.33	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.3	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110065 Sample ID: NFM2	Date Col Date Rec		0/11/2019 11:14 0/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00071	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0035	mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	6.7	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
				1			09/18/2019		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 25 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110065 Sample ID: NFM2	Date Col Date Rec		9/11/2019 11:14 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>GENERAL WET CHEMISTRY</u>									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.22	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.052J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0026.	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.037J	mg/L	1	0.20	0.000010	10/03/2019	KDN	μ.
Dissolved Nitrogen as N	SM 4500-N	0.28	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	6.1	mg/L	1	1.0	0.35	09/18/2019	SHA	
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110066 Sample ID: NFM3	Date Col Date Rec		9/11/2019 10:05 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0029	mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00073	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.2	NTU	1	1.0	NA	09/11/2019	JKN	
ranbiality(rield)									
GENERAL WET CHEMISTRY					0.50	0.0000010	09/18/2019	KDN	
GENERAL WET CHEMISTRY	EPA 350.1	ND	mg/L	1	0.50	0.0000010	00/10/2010	NDIN	
<i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N)	EPA 350.1 EPA 351.2 (LowLevel)	ND 0.21	mg/L mg/L	1 1	0.50	0.070	10/03/2019		
			mg/L						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 26 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID:	SRINCS	Study								
Lab ID: Sample ID:	1909110066 NFM3	Date Coll Date Rec		9/11/2019 10:05 9/11/2019 15:30		Matrix:	Surface	Water		
Pa	rameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL W</u>	<u>ET CHEMISTRY</u>									
Phosphorus,E	Diss(as P)	EPA 365.4	0.040	l mg/L	1	0.20	0.000010	10/03/2019	KDN	[1]
Dissolved Nitr	ogen as N	SM 4500-N	0.27	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorga	anic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Orgar	nic,Dissolved	SM 5310 B	4.4	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>										
Silica(SiO2)		EPA 200.8	18,000) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: Sample ID:	1909110067 NFM4	Date Coll Date Rec		9/11/2019 09:05 9/11/2019 15:30		Matrix:	Surface	Water	23	
Ра	rameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	
BIOLOGICA	L									
chiorophyll 'a'		SM 10200 H	0.0024	t mg/L	1	0.00073	NA	09/24/2019	JTA	
chlorophyll 'a'		SM 10200 H	0.0026	6 mg/L	1	0.00073	NA	09/24/2019	JTA	
FIELD ANAL	. <u>YSIS</u>									
Turbidity(Field	1)	EPA 180.1	5.0	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL W	<u>'ET CHEMISTRY</u>									
Nitrogen,Amn	nonia(as N)	EPA 350.1	0.050	J mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DIS	SSOLVED	EPA 351.2 (LowLevel)	0.15J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)		EPA 353.2	0.099	l mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)		EPA 353.2	0.0024	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,E	Diss(as P)	EPA 365.4	0.041.	J mg/L	1	0.20	0.000010	10/03/2019	KDN	[1]
Dissolved Nitr	ogen as N	SM 4500-N	0.25	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorga	anic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/18/2019	SHA	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 27 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110067 Sample ID: NFM4	Date Coll Date Rec		9/11/2019 09:05 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	units	DF	RL	MDL	Analyzed	Ву	_
GENERAL WET CHEMISTRY									
Carbon,Organic,Dissolved	SM 5310 B	4.5	mg/L	1	1.0	0.35	09/18/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	19,000) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110068 Sample ID: SFM1	Date Coll Date Rec		9/11/2019 12:13 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0038	s mg/L	1	0.00071	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0037	′ mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	4.5	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.0010	J mg/L	1	0.50	0.0000010	09/18/2019	KDN	[]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.10J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.030J	l mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0022	J mg/L	1	0.10	0.000010	10/01/2019	KDN	I
Phosphorus,Diss(as P)	EPA 365.4	0.22	mg/L	1	0.20	0.000010	10/03/2019	KDN	
Dissolved Nitrogen as N	SM 4500-N	0.13	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	6.2	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.1	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	15,000) ug/L	1	120	54	10/23/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 28 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110068 Sample ID: SFM1	Date Col Date Rec		9/11/2019 12:13 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Result	s Units	DF	RL	MDL	Analyzed	Ву	_
Lab ID: 1909110069 Sample ID: SFM2	Date Col Date Rec		9/11/2019 11:18 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Result	s Units	DF	RL	MDL	Analyzed	Ву	
BIOLOGICAL		8			2 13	6 2			70
chiorophyll 'a'	SM 10200 H	0.003	2 mg/L	1	0.00071	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.003	4 mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	4.8	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.012	J mg/L	1	0.50	0.0000010	09/18/2019	KDN	[]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.15J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.066	J mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0032	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[]
Phosphorus,Diss(as P)	EPA 365.4	0.047	J mg/L	1	0.20	0.000010	10/03/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.22	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.7	mg/L	1	1.0	0.35	09/18/2019	SHA	
METALS									
Silica(SiO2)	EPA 200.8	18,00) ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110070 Sample ID: SFM3	Date Col Date Rec		9/11/2019 10:08 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Result	s Units	DF	RL	MDL	Analyzed	Ву	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 29 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110070 Sample ID: SFM3	Date Col Date Rec		9/11/2019 10:08 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00071	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0033	mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	4.5	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.091J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.26	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.12	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0036J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[
Phosphorus,Diss(as P)	EPA 365.4	0.051J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[]
Dissolved Nitrogen as N	SM 4500-N	0.38	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.5	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	17,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110071 Sample ID: SFM4	Date Col Date Rec		9/11/2019 09:07 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00071	NA	09/24/2019	JTA	
chiorophyll 'a'	SM 10200 H	0.0033	mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 30 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909110071 Sample ID: SFM4	Date Col Date Rec		9/11/2019 09:07 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	4.0	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.043J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.15J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.095J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0054J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.092J	mg/L	1	0.20	0.000010	10/09/2019	KDN	
Dissolved Nitrogen as N	SM 4500-N	0.25	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.1	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.3	mg/L	1	1.0	0.35	09/18/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	15,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: 1909110072 Sample ID: MOKEM	Date Col Date Rec		9/11/2019 12:58 9/11/2019 15:30		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0034	mg/L	1	0.00071	NA	09/24/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00071	NA	09/24/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.2	NTU	1	1.0	NA	09/11/2019	JKN	
GENERAL WET CHEMISTRY									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 31 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID:	onnoo	Study								
Lab ID: Sample ID:	1909110072 MOKEM	Date Coll Date Rec		1/2019 12:58 1/2019 15:30		Matrix:	Surface	Water		
Par	ameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WI</u>	<u>ET CHEMISTRY</u>									
TKN(as N)DIS	SOLVED	EPA 351.2 (LowLevel)	0.31	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)		EPA 353.2	0.011J	mg/L	1	0.10	0.000010	10/02/2019	KDN	[1]
Nitrite(as N)		EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Di	iss(as P)	EPA 365.4	0.0051J	mg/L	1	0.20	0.000010	10/09/2019	KDN	ĮI,
Dissolved Nitro	ogen as N	SM 4500-N	0.32	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorga	nic,Dissolved	SM 5310 B	3.3	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Organi <u>METALS</u>	ic,Dissolved	SM 5310 B	2.9	mg/L	1	1.0	0.35	09/18/2019	SHA	
Silica(SiO2)		EPA 200.8	13,000	ug/L	1	120	54	10/23/2019	NCH	
Lab ID: Sample ID:	1909110073 NFM3	Date Coll Date Rec		1/2019 10:05 1/2019 15:30		Matrix:	Surface	Water		
Par	ameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WI	<u>ET CHEMISTRY</u>									
Nitrogen,Amm	onia(as N)	EPA 350.1	0.0078J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DIS	SOLVED	EPA 351.2 (LowLevel)	0.24	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)		EPA 353.2	0.051J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)		EPA 353.2	0.0033J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Di	iss(as P)	EPA 365.4	0.049J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1]
Dissolved Nitro	ogen as N	SM 4500-N	0.30	mg/L	1	0.01	NA	10/23/2019	UFB	
		SM 5310 B	12	mg/L	1	1.0	NA	09/18/2019	SHA	
Carbon,Inorga	nic,Dissolved									
Carbon,Inorga Carbon,Organi		SM 5310 B	4.7	mg/L	1	1.0	0.35	09/18/2019	SHA	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 32 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

RiNCS Study								
				Matrix:	Surface	Water		
Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
EPA 200.8	18,000	ug/L	1	120	54	10/23/2019	NCH	
				Matrix:	Surface	Water		
Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
SM 10200 H	0.0048	mg/L	1	0.00071	NA	09/26/2019	JTA	
SM 10200 H	0.0045	mg/L	1	0.00071	NA	09/26/2019	JTA	
EPA 180.1	4.2	NTU	1	1.0	NA	09/12/2019	JKN	
<u>ISTRY</u>								
EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
EPA 351.2 (LowLevel)	0.24	mg/L	1	0.20	0.070	10/03/2019	KDN	
EPA 353.2	0.042J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
EPA 365.4	0.043J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1]
SM 4500-N	0.28	mg/L	1	0.01	NA	10/23/2019	UFB	
ed SM 5310 B	11	mg/L	1	1.0	NA	09/23/2019	SHA	
d SM 5310 B	4.9	mg/L	1	1.0	0.35	09/23/2019	SHA	
EPA 200.8	18,000	ug/L	1	120	54	10/24/2019	NCH	
	Date R Method EPA 200.8 D32 Date C Date R D32 Date C Date R D32 Date R D33 D32 D32 D32 D33 D32 D33 D33 D33 D33	Date Collected: Date Received: Method Results EPA 200.8 18,000 D32 Date Collected: Date Received: Date Received: Date Collected: Date Received: Method Results SM 10200 H 0.0048 SM 10200 H 0.0045 EPA 180.1 4.2 ZSTRY EPA 350.1 ND EPA 351.2 (LowLevel) 0.24 EPA 365.4 0.0043J SM 4500-N 0.28 red SM 5310 B 11 SM 5310 B 4.9	Date Collected: Date Received: 9/11/2019 10:05 9/11/2019 15:30 Method Results Units EPA 200.8 18,000 ug/L Date Received: 9/12/2019 11:15 Date Received: 9/12/2019 11:15 9/12/2019 15:36 Method Results Units Method Results Units Method Results Units SM 10200 H 0.0048 mg/L SM 10200 H 0.0045 mg/L EPA 180.1 4.2 NTU EPA 350.1 ND mg/L EPA 353.2 0.042J mg/L EPA 353.2 ND mg/L EPA 365.4 0.043J mg/L EPA 365.4 <t< td=""><td>Date Collected: 9/11/2019 10:05 9/11/2019 15:30 Method Results Units DF EPA 200.8 18,000 ug/L 1 D32 Date Collected: 9/12/2019 11:15 Date Received: 9/12/2019 11:15 Date Received: DF Method Results Units DF SM 10200 H 0.0048 mg/L 1 SM 10200 H 0.0045 mg/L 1 EPA 180.1 4.2 NTU 1 EPA 350.1 ND mg/L 1 EPA 351.2 (LowLevel) 0.24 mg/L 1 EPA 353.2 ND mg/L 1 EPA 365.4 0.043J mg/L 1 SM 4500-N 0.28 mg/L 1 SM 4500-N 0.28 mg/L</td><td>J73 Date Collected: Date Received: 9/11/2019 10.05 9/11/2019 15.30 Matrix: Method Results Units DF RL EPA 200.8 18,000 ug/L 1 120 J32 Date Collected: Date Received: 9/12/2019 11:15 9/12/2019 15:36 Matrix: Method Results Units DF RL Method Results 9/12/2019 11:15 Date Received: 9/12/2019 15:36 Matrix: Method Results Units DF RL SM 10200 H 0.0048 mg/L 1 0.00071 SM 10200 H 0.0045 mg/L 1 0.00071 EPA 180.1 4.2 NTU 1 0.00071 EPA 350.1 ND mg/L 1 0.20 EPA 351.2 (LowLevel) 0.24 mg/L 1 0.20 EPA 353.2 ND mg/L 1 0.01 EPA 353.2 ND mg/L 1 0.20 SM 4500-N 0.28 mg/L</td><td>173 Date Collected: 9/11/2019 10.05 Date Received: Matrix: Surface Method Results Units DF RL MDL EPA 200.8 18,000 ug/L 1 120 54 032 Date Collected: 9/12/2019 11:15 Date Received: Matrix: Surface 034 Method Results Units DF RL MDL 035 Date Collected: 9/12/2019 11:15 Date Received: 9/12/2019 15:36 Matrix: Surface 036 Method Results Units DF RL MDL SM 10200 H 0.0048 mg/L 1 0.00071 NA SM 10200 H 0.0045 mg/L 1 0.00071 NA EPA 180.1 4.2 NTU 1 0.00071 NA ISTRY EPA 350.1 ND mg/L 1 0.20 0.000010 EPA 351.2 (LowLevel) 0.24 mg/L 1 0.10 0.000010 EPA 353.2</td><td>173 Date Collected: 9/11/2019 10.05 9/11/2019 15.30 Matrix: Surface Water Method Results Units DF RL MDL Analyzed EPA 200.8 18,000 ug/L 1 120 54 10/23/2019 32 Date Collected: 9/12/2019 11:15 Date Received: Matrix: Surface Water 32 Date Collected: 9/12/2019 15:36 Matrix: Surface Water 34 Method Results Units DF RL MDL Analyzed 35 Method Results Units DF RL MDL Analyzed 36 Method Results Units DF RL MDL Analyzed SM 10200 H 0.0048 mg/L 1 0.00071 NA 09/26/2019 SM 10200 H 0.0045 mg/L 1 0.00071 NA 09/26/2019 EPA 180.1 4.2 NTU 1 0.50 0.000010 0/18/2019 EPA</td><td>Matrix: Surface Water Method Results Units DF RL MDL Analyzed By EPA 200.8 18,000 ug/L 1 120 54 10/23/2019 NCH 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 34 Method Results Units DF RL MDL Analyzed By SM 10200 H 0.0048 mg/L 1 0.00071 NA 09/26/2019 JTA SM 10200 H 0.0045 mg/L 1 0.00071 NA 09/26/2019 JTA EPA 180.1 4.2 NTU 1 1.0 NA 09/12/2019 KN EPA 351.2 (LowLevel) 0.24 mg/L 1 0.20 0.0700 10/03/2019 KDN <</td></t<>	Date Collected: 9/11/2019 10:05 9/11/2019 15:30 Method Results Units DF EPA 200.8 18,000 ug/L 1 D32 Date Collected: 9/12/2019 11:15 Date Received: 9/12/2019 11:15 Date Received: DF Method Results Units DF SM 10200 H 0.0048 mg/L 1 SM 10200 H 0.0045 mg/L 1 EPA 180.1 4.2 NTU 1 EPA 350.1 ND mg/L 1 EPA 351.2 (LowLevel) 0.24 mg/L 1 EPA 353.2 ND mg/L 1 EPA 365.4 0.043J mg/L 1 SM 4500-N 0.28 mg/L 1 SM 4500-N 0.28 mg/L	J73 Date Collected: Date Received: 9/11/2019 10.05 9/11/2019 15.30 Matrix: Method Results Units DF RL EPA 200.8 18,000 ug/L 1 120 J32 Date Collected: Date Received: 9/12/2019 11:15 9/12/2019 15:36 Matrix: Method Results Units DF RL Method Results 9/12/2019 11:15 Date Received: 9/12/2019 15:36 Matrix: Method Results Units DF RL SM 10200 H 0.0048 mg/L 1 0.00071 SM 10200 H 0.0045 mg/L 1 0.00071 EPA 180.1 4.2 NTU 1 0.00071 EPA 350.1 ND mg/L 1 0.20 EPA 351.2 (LowLevel) 0.24 mg/L 1 0.20 EPA 353.2 ND mg/L 1 0.01 EPA 353.2 ND mg/L 1 0.20 SM 4500-N 0.28 mg/L	173 Date Collected: 9/11/2019 10.05 Date Received: Matrix: Surface Method Results Units DF RL MDL EPA 200.8 18,000 ug/L 1 120 54 032 Date Collected: 9/12/2019 11:15 Date Received: Matrix: Surface 034 Method Results Units DF RL MDL 035 Date Collected: 9/12/2019 11:15 Date Received: 9/12/2019 15:36 Matrix: Surface 036 Method Results Units DF RL MDL SM 10200 H 0.0048 mg/L 1 0.00071 NA SM 10200 H 0.0045 mg/L 1 0.00071 NA EPA 180.1 4.2 NTU 1 0.00071 NA ISTRY EPA 350.1 ND mg/L 1 0.20 0.000010 EPA 351.2 (LowLevel) 0.24 mg/L 1 0.10 0.000010 EPA 353.2	173 Date Collected: 9/11/2019 10.05 9/11/2019 15.30 Matrix: Surface Water Method Results Units DF RL MDL Analyzed EPA 200.8 18,000 ug/L 1 120 54 10/23/2019 32 Date Collected: 9/12/2019 11:15 Date Received: Matrix: Surface Water 32 Date Collected: 9/12/2019 15:36 Matrix: Surface Water 34 Method Results Units DF RL MDL Analyzed 35 Method Results Units DF RL MDL Analyzed 36 Method Results Units DF RL MDL Analyzed SM 10200 H 0.0048 mg/L 1 0.00071 NA 09/26/2019 SM 10200 H 0.0045 mg/L 1 0.00071 NA 09/26/2019 EPA 180.1 4.2 NTU 1 0.50 0.000010 0/18/2019 EPA	Matrix: Surface Water Method Results Units DF RL MDL Analyzed By EPA 200.8 18,000 ug/L 1 120 54 10/23/2019 NCH 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 32 Date Collected: 9/12/2019 11:15 Matrix: Surface Water 34 Method Results Units DF RL MDL Analyzed By SM 10200 H 0.0048 mg/L 1 0.00071 NA 09/26/2019 JTA SM 10200 H 0.0045 mg/L 1 0.00071 NA 09/26/2019 JTA EPA 180.1 4.2 NTU 1 1.0 NA 09/12/2019 KN EPA 351.2 (LowLevel) 0.24 mg/L 1 0.20 0.0700 10/03/2019 KDN <

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 33 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120033 Sample ID: GS2	Date Col Date Rec		/12/2019 10:38 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0067	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0065	mg/L	1	0.00071	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.1	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.0017J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.25	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.044J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0027J	mg/L	1	0.10	0.000010	10/01/2019	KDN	U
Phosphorus,Diss(as P)	EPA 365.4	0.062J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[]
Dissolved Nitrogen as N	SM 4500-N	0.30	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.2	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120034 Sample ID: GS3	Date Col Date Rec		/12/2019 10:05 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
BIOLOGICAL									
chlorophyll 'a'	SM 10200 H	0.0047	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0051	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a' chlorophyll 'a' <i>FIELD ANALYSIS</i>									5/2019 JTA 5/2019 JTA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 34 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120034 Sample ID: GS3	Date Col Date Rec		9/12/2019 10:05 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.6	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.018J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.22	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.052J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0022J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.043J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1]
Dissolved Nitrogen as N	SM 4500-N	0.27	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	6.0	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	20,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120035 Sample ID: GS4	Date Col Date Rec		9/12/2019 09:30 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0026	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0027	mg/L	1	0.00071	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.4	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 35 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120035 Sample ID: GS4	Date Coll Date Rec		/12/2019 09:30 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.24	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.050J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0027J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.058J	mg/L	1	0.20	0.000010	10/09/2019	KDN	μ
Dissolved Nitrogen as N	SM 4500-N	0.29	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	12	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	5.6	mg/L	1	1.0	0.35	09/23/2019	SHA	
Silica(SiO2)	EPA 200.8	19,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120036 Sample ID: SREM	Date Coll Date Rec		/12/2019 12:37 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0041	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0047	mg/L	1	0.00071	NA	09/26/2019	JTA	
FIELD ANALYSIS						NA	09/12/2019	JKN	
FIELD ANALYSIS	EPA 180.1	5.6	NTU	1	1.0	INA.			
Turbidity(Field)	EPA 180.1	5.6	NTU	1	1.0	NA			
Turbidity(Field) GENERAL WET CHEMISTRY	EPA 180.1 EPA 350.1	5.6 ND	NTU mg/L	1	1.0 0.50	0.0000010		KDN	
Turbidity(Field) <i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N)									
	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 36 of 93

Print Date: 03/05/2020

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID:	SRINCS	Study								
	1909120036 SREM	Date Coll Date Rec		9/12/2019 12:37 9/12/2019 15:36		Matrix:	Surface	Water		
Para	imeter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WE</u>	<u>T CHEMISTRY</u>									
Phosphorus, Dis	ss(as P)	EPA 365.4	0.031J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1
Dissolved Nitro	gen as N	SM 4500-N	0.13	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorgan	ic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organio	c,Dissolved	SM 5310 B	5.3	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>										
Silica(SiO2)		EPA 200.8	19,000	ug/L	1	120	54	10/24/2019	NCH	
	1909120037 NFM1	Date Coll Date Rec		9/12/2019 11:45 9/12/2019 15:36		Matrix:	Surface	Water	~	
Para	umeter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>										
chiorophyll 'a'		SM 10200 H	0.0029	mg/L	1	0.00071	NA	09/26/2019	JTA	
chiorophyll 'a'		SM 10200 H	0.0030	mg/L	1	0.00071	NA	09/26/2019	JTA	
FIELD ANALY	<u>SIS</u>									
Turbidity(Field)		EPA 180.1	5.8	NTU	1	1.0	NA	09/12/2019	JKN	
<u>GENERAL WE</u>	<u>T CHEMISTRY</u>									
Nitrogen,Ammo	onia(as N)	EPA 350.1	0.0013.	J mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
TKN(as N)DISS	SOLVED	EPA 351.2 (LowLevel)	0.27	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)		EPA 353.2	0.040J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)		EPA 353.2	0.0029	J mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus, Dis	ss(as P)	EPA 365.4	0.040J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1
Dissolved Nitro	gen as N	SM 4500-N	0.31	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorgan	ic Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/23/2019	SHA	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 37 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Work Order No: 72538 Project ID: SRiNC	S Study								
Lab ID: 1909120037 Sample ID: NFM1	Date Col Date Re		12/2019 11:45 12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	5.7	mg/L	1	1.0	0.35	09/23/2019	SHA	
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120038 Sample ID: NFM2	Date Col Date Re		12/2019 10:50 12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00071	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0029	mg/L	1	0.00071	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.7	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY								00000	
Nitrogen,Ammonia(as N)	EPA 350.1	0.00019J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.26	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.041J	mg/L	1	0.10	0.000010	10/02/2019		
Nitrite(as N)	EPA 353.2	0.0026J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.021J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1]
Dissolved Nitrogen as N	SM 4500-N	0.30	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorganic, Dissolved	SM 5310 B	9.8	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.4	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 38 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

	1909120038 NFM2	Date Col Date Rec		9/12/2019 10:50 9/12/2019 15:36		Matrix:	Surface	Water		
Para	ameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	_
<u>METALS</u> Silica(SiO2)		EPA 200.8	18,000) ug/L	1	120	54	10/24/2019	NCH	
	1909120039 NFM3	Date Col Date Rec		9/12/2019 10:05 9/12/2019 15:36		Matrix:	Surface	Water		
Para	ameter	Method	Results	sUnits	DF	RL	MDL	Analyzed	Ву	_
IOLOGICAL										
hlorophyll 'a'		SM 10200 H	0.0030) mg/L	1	0.00072	NA	09/26/2019	JTA	
hiorophyll 'a'		SM 10200 H	0.0029) mg/L	1	0.00072	NA	09/26/2019	JTA	
TELD ANALY	<u>'SIS</u>									
urbidity(Field)		EPA 180.1	6.8	NTU	1	1.0	NA	09/12/2019	JKN	
<u>GENERAL WE</u>	<u>T CHEMISTRY</u>									
litrogen,Ammo	onia(as N)	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
KN(as N)DISS	SOLVED	EPA 351.2 (LowLevel)	0.33	mg/L	1	0.20	0.070	10/03/2019	KDN	
litrate(as N)		EPA 353.2	0.045J	l mg/L	1	0.10	0.000010	10/02/2019	KDN	
litrite(as N)		EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
hosphorus,Dis	ss(as P)	EPA 365.4	0.027J	l mg/L	1	0.20	0.000010	10/03/2019	KDN	ſ
Dissolved Nitro	gen as N	SM 4500-N	0.37	mg/L	1	0.01	NA	10/23/2019	UFB	
arbon,Inorgan	iic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/23/2019	SHA	
arbon,Organio	c,Dissolved	SM 5310 B	6.2	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>IETALS</u>										
ilica(SiO2)		EPA 200.8	19,000) ug/L	1	120	54	10/24/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 39 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120040 Sample ID: NFM4	Date Coll Date Rec		2/2019 09:10 2/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0024	mg/L	1	0.00072	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0024	mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	5.0	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.0011J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.25	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.052J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0032J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[
Phosphorus,Diss(as P)	EPA 365.4	0.030J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[
Dissolved Nitrogen as N	SM 4500-N	0.30	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	9.4	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.8	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	18,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120041 Sample ID: SFM1	Date Coll Date Rec		2/2019 13:30 2/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0039	mg/L	1	0.00072	NA	09/26/2019	JTA	
chiorophyll 'a'	SM 10200 H	0.0040	mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS									

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 40 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120041 Sample ID: SFM1	Date Co Date Re		/12/2019 13:30 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.2	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.21	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.024J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.000070J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Phosphorus,Diss(as P)	EPA 365.4	0.026J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.23	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	6.6	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	3.2	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	14,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120042	Date Co	llected: 9	/12/2019 12:14		Matrix:	Surface	Water		
Sample ID: SFM2	Date Re	ceived: 9	/12/2019 15:36						
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	-
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00072	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0030	mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.7	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
	EPA 350.1	0.0012J	mg/L	1	0.50		09/18/2019		τ.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 41 of 93 Print Date: 03/05/2020

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120042 Sample ID: SFM2	Date Coll Date Rec		/12/2019 12:14 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
GENERAL WET CHEMISTRY									
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.18J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.044J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Diss(as P)	EPA 365.4	0.032J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.22	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	11	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	4.1	mg/L	1	1.0	0.35	09/23/2019	SHA	
Silica(SiO2)	EPA 200.8	17,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120043 Sample ID: SFM3	Date Coll Date Rec		/12/2019 11:27 /12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0034	mg/L	1	0.00072	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS					1.0	NA	09/12/2019	JKN	
<u>FIELD ANALYSIS</u> Turbidity(Field)	EPA 180.1	3.5	NTU	1	1.0				
Turbidity(Field)	EPA 180.1	3.5	NTU	1	1.0				
Turbidity(Field) GENERAL WET CHEMISTRY	EPA 180.1 EPA 350.1	3.5 ND	NTU mg/L	1	0.50		09/18/2019	KDN	
Turbidity(Field) <i>GENERAL WET CHEMISTRY</i> Nitrogen,Ammonia(as N)							09/18/2019 10/03/2019		
	EPA 350.1	ND	mg/L	1	0.50	0.0000010			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 42 of 93

272

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120043 Sample ID: SFM3	Date Col Date Rec		9/12/2019 11:27 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WET CHEMISTRY</u>									
Phosphorus,Diss(as P)	EPA 365.4	0.021J	mg/L	1	0.20	0.000010	10/03/2019	KDN	[1
Dissolved Nitrogen as N	SM 4500-N	0.23	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	10	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	4.1	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	17,000	ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120044 Sample ID: SFM4	Date Col Date Rec		9/12/2019 10:03 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0031	mg/L	1	0.00072	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0032	mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.9	NTU	1	1.0	NA	09/12/2019	JKN	
<u>GENERAL WET CHEMISTRY</u>									
Nitrogen,Ammonia(as N)	EPA 350.1	0.0068J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.22	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.057J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
	EPA 353.2	0.0037J	l mg/L	1	0.10	0.000010	10/01/2019	KDN	[1
Nitrite(as N)					0.20	0.000010	10/09/2019	KDN	11
er Sonda verde ander et en statute en en et	EPA 365.4	0.030J	mg/L	1	0.20	0.000010	10/03/2013		14
Nitrite(as N) Phosphorus,Diss(as P) Dissolved Nitrogen as N	EPA 365.4 SM 4500-N	0.030J 0.28	mg/L mg/L	1	0.01	NA	10/23/2019	UFB	11

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 43 of 93

72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Lab ID: 1909120044 Sample ID: SFM4	Date Col Date Rec		9/12/2019 10:03 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	units	DF	RL	MDL	Analyzed	Ву	_
<u>GENERAL WET CHEMISTRY</u>									
Carbon,Organic,Dissolved <u>METALS</u>	SM 5310 B	4.1	mg/L	1	1.0	0.35	09/23/2019	SHA	
Silica(SiO2)	EPA 200.8	15,000) ug/L	1	120	54	10/24/2019	NCH	
Lab ID: 1909120045 Sample ID: MOKEM	Date Col Date Rec		9/12/2019 13:20 9/12/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	s Units	DF	RL	MDL	Analyzed	Ву	_
<u>BIOLOGICAL</u>									
chlorophyll 'a'	SM 10200 H	0.0036	i mg/L	1	0.00072	NA	09/26/2019	JTA	
chlorophyll 'a'	SM 10200 H	0.0035	i mg/L	1	0.00072	NA	09/26/2019	JTA	
FIELD ANALYSIS									
Turbidity(Field)	EPA 180.1	3.9	NTU	1	1.0	NA	09/12/2019	JKN	
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	ND	mg/L	1	0.50	0.0000010	09/18/2019	KDN	
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.18J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.010J	l mg/L	1	0.10	0.000010	10/02/2019	KDN	[]
Nitrite(as N)	EPA 353.2	ND	mg/L	1	0.10	0.000010	10/01/2019	KDN	
Phosphorus,Diss(as P)	EPA 365.4	0.030J	l mg/L	1	0.20	0.000010	10/09/2019	KDN	D
Dissolved Nitrogen as N	SM 4500-N	0.19	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon, Inorganic, Dissolved	SM 5310 B	3.1	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	3.0	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	12,000) ug/L	1	120	54	10/24/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 44 of 93

Work Order No:

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

ANALYTICAL RESULTS

Project ID: SRINCS	S Study								
Lab ID: 1909120045 Sample ID: MOKEM	Date Col Date Rec		2/2019 13:20 2/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	-
Lab ID: 1909120046 Sample ID: SFM4	Date Col Date Rec		2/2019 10:03 2/2019 15:36		Matrix:	Surface	Water		
Parameter	Method	Results	Units	DF	RL	MDL	Analyzed	Ву	_
GENERAL WET CHEMISTRY									
Nitrogen,Ammonia(as N)	EPA 350.1	0.033J	mg/L	1	0.50	0.0000010	09/18/2019	KDN	[1]
TKN(as N)DISSOLVED	EPA 351.2 (LowLevel)	0.17J	mg/L	1	0.20	0.070	10/03/2019	KDN	
Nitrate(as N)	EPA 353.2	0.074J	mg/L	1	0.10	0.000010	10/02/2019	KDN	
Nitrite(as N)	EPA 353.2	0.0034J	mg/L	1	0.10	0.000010	10/01/2019	KDN	[1]
Phosphorus,Diss(as P)	EPA 365.4	0.035J	mg/L	1	0.20	0.000010	10/09/2019	KDN	[1]
Dissolved Nitrogen as N	SM 4500-N	0.25	mg/L	1	0.01	NA	10/23/2019	UFB	
Carbon,Inorganic,Dissolved	SM 5310 B	7.8	mg/L	1	1.0	NA	09/23/2019	SHA	
Carbon,Organic,Dissolved	SM 5310 B	5.3	mg/L	1	1.0	0.35	09/23/2019	SHA	
<u>METALS</u>									
Silica(SiO2)	EPA 200.8	15,000	ug/L	1	120	54	10/24/2019	NCH	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 45 of 93

ANALYTICAL RESULTS QUALIFIERS

Work Order No: 72538 Project ID: SRINCS Study

PARAMETER QUALIFIERS

- J The analytical result is below RL but above MDL.
- MDL Method Detection Limit defined in 40 CFR, Sect. 136, Appendix B.
- ND Non Detect Analyte not detected above the MDL or, in the absence of a MDL, above the RL

RL - Reporting limit is the quantitation limit at which the laboratory is able to detect an analyte with a certain degree of confidence. Generally, this represents the parameter's lowest calibration point. This can also define the customer's requirement.

- (S) Surrogates.
- DF Dilution Factor.
- NA Not Applicable.

VS and VSS results reported as percentages of TS and TSS.

MBAS, calculated as LAS, mol wt 340.

Total Alkalinity is titrated to pH 4.5 per the method. This may not correspond to an inflection point where the slope changes rapidly.

- [1] The reported value is an estimation.
- [2] This sample was analyzed outside of the EPA recommended holding time of 28 days.
- [3] Result confirmed by second analysis of original extract.
- [8] The batch QC for this sample failed, but there was insufficient volume to reanalyze. The result is an estimation only.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 46 of 93

276

QUALITY CONTROL DATA

QC Batch: MET	P/6036	6	Analysis Method	: EPA 20	0.8		
QC Batch Method: EPA	200.8	5	Analysis Descrip	tion: Total R	ecoverable Meta	ls Prep	
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100066 1909100072	1909090006 1909100067 1909100073	1909090007 1909100068 1909100074	1909090008 1909100069 1909100075	1909090046 1909100070 1909100076	1909100065 1909100071	
METHOD BLANK: 32364	2						
Associated Lab Samples:	1909090006	1909100067	1909100073	1909090046	1909100075	1909090005	
	1909100068	1909100071	1909090007	1909090008	1909100065	1909100070	
	1909100069	1909100072	1909100074	1909100076	1909100066		
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	_
Silica(SiO2)		ND	50	ug/L	21		
Parameter	SAMPLE & LCS	SD: LCS-3 LCS <u>% Rec</u> 104	23643 Li LCSD <u>% Rec</u> 103	CSD-323644 % Rec Limit 85-115	 	Max RPD 20.7	
Parameter Silica(SiO2)		LCS <u>% Rec</u> 104	LCSD <u>% Rec</u> 103	% Rec Limit		RPD	
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 104 ATE: MS-3236	LCSD <u>% Rec</u> 103	% Rec Limit 85-115	0.78	<u>RPD</u> 20.7	
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 104	LCSD <u>% Rec</u> 103	% Rec Limit 85-115	0.78	RPD	Qualifier
Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 19	SPIKE DUPLIC	LCS <u>% Rec</u> 104 ATE: MS-3236 MS	LCSD <u>% Rec</u> 103 845 MS	% Rec Limit 85-115 SD-323646 % Re	0.78 ec ts <u>RPD</u>	<u>RPD</u> 20.7 Max	Qualifier
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 19 Parameter	SPIKE DUPLIC 909090005 SPIKE DUPLIC	LCS <u>% Rec</u> 104 ATE: MS-3236 <u>% Rec</u> 117	LCSD <u>% Rec</u> 103 345 MSD <u>% Rec</u> 118	% Rec Limit 85-115 6D-323646 % R Limi	0.78 ec ts <u>RPD</u> 30 0.22	RPD 20.7 Max RPD	Qualifier

Print Date: 03/05/2020

Page 47 of 93

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

QUALITY CONTROL DATA

Project ID:	SRINCS Study						
	E & MATRIX SPIKE DUPLI	CATE: MS-324664	MSD-32	4665			
Associated Lab	Sample: 1909090006						
		MS	MSD	% Rec		Max	
Paran	neter	% Rec	% Rec	Limits	RPD	RPD	Qualifier
Silica(SiO2)		117	117	70-130	0.069	20.7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 48 of 93

QUALITY CONTROL DATA

QC Batch: MET	P/6037	F	Analysis Method	EPA 20	00.8		
QC Batch Method: EPA	200.8	ŀ	Analysis Descrip	tion: Total R	ecoverable Meta	ls Prep	
Associated Lab Samples: Associated Lab Samples:	1909100077 1909110063 1909110069	1909100097 1909110064 1909110070	1909110059 1909110065 1909110071	1909110060 1909110066 1909110072	1909110061 1909110067 1909110073	1909110062 1909110068	
METHOD BLANK: 32364	7						
Associated Lab Samples:	1909110071 1909110062 1909110069	1909100077 1909110063 1909110064	1909110059 1909110065 1909110070	1909110061 1909110073 1909110072	1909110066 1909110068	1909110060 1909110067	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Silica(SiO2)		ND	50	ug/L	21		
Parameter	SAMPLE & LC	LCS % Rec	LCSD % Rec	CSD-323649 % Rec Limit		Max RPD	
Parameter	SAMPLE & LC	LCS	LCSD	% Rec	 1.1		
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 106	LCSD <u>% Rec</u> 104	% Rec Limit		RPD	
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 106	LCSD <u>% Rec</u> 104	% Rec Limit 85-115	1.1 ec	RPD	Qualifier
Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 11	SPIKE DUPLIC	LCS <u>% Rec</u> 106 ATE: MS-3236 MS	LCSD <u>% Rec</u> 104 50 MSD	% Rec Limit 85-115 SD-323651 % Re	ec ts RPD	<u>RPD</u> 20.7 Max	Qualifier
Parameter Silica(SIO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 1: Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC 909110059 SPIKE DUPLIC	LCS <u>% Rec</u> 106 ATE: MS-3236 MS <u>% Rec</u> 100	LCSD <u>% Rec</u> 104 50 MSD <u>% Rec</u> 108	% Rec Limit 85-115 SD-323651 % R Limi	ec ts RPD	RPD 20.7 Max RPD	Qualifier
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 1 Parameter Silica(SiO2)	SPIKE DUPLIC 909110059 SPIKE DUPLIC	LCS <u>% Rec</u> 106 ATE: MS-3236 MS <u>% Rec</u> 100	LCSD <u>% Rec</u> 104 50 MSD <u>% Rec</u> 108	% Rec Limit 85-115 SD-323651 % R % R %	1.1 ec ts RPD 30 1.6	RPD 20.7 Max RPD	Qualifier

Print Date: 03/05/2020

Page 49 of 93

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

QUALITY CONTROL DATA

Project ID:	SRINCS Study						
	& MATRIX SPIKE DUPLI Sample: 1909110060	CATE: MS-324666	MSD-32	24667			
Associated Lab	Sample. 1909110000	MS	MSD	% Rec		Max	
Param	neter	% Rec	% Rec	Limits	RPD	RPD	Qualifier
Silica(SiO2)		109	107	70-130	0.34	20.7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 50 of 93

Print Date: 03/05/2020

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRINCS	S Study						
QC Batch: QC Batch Method:		/66179 0200 H		Analysis Method Analysis Descrip		M 10200 H hlorophyll 'a'		
Associated Lab Sa Associated Lab Sa		1909110064 1909110072	1909110065	1909110068	1909110	069 1909110070	1909110071	
METHOD BLANK: Associated Lab Sa		9 1909110071 1909110072	1909110065	1909110068	1909110	069 1909110070	1909110064	
Paran	neter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
chlorophyll 'a'			ND	0.00071	mg/L	NA		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Pate: 02/05/2020

Print Date: 03/05/2020

Page 51 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRINCS	Study					
QC Batch: QC Batch Method		/66180 0200 H		Analysis Method Analysis Descrip		10200 H prophyll 'a'	
Associated Lab Sa Associated Lab Sa		1909110059 1909110067	1909110060	1909110061	190911006	2 1909110063	1909110066
METHOD BLANK		0					
	in piece	1909110066 1909110067	1909110059	1909110061	190911006	3 1909110060	1909110062

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 52 of 93

QUALITY CONTROL DATA

Project ID: SRiNCS	Study						
QC Batch: TOC/	1553		Analysis Method	: SM 53	10 B		
QC Batch Method: SM 5	310 B	5	Analysis Descrip	tion: Carbor	n,Organic by Con	nbustion,Oxidation	
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100066 1909100072 1909100078	1909090006 1909100067 1909100073 1909100079	1909090007 1909100068 1909100074	1909090008 1909100069 1909100075	1909090046 1909100070 1909100076	1909100065 1909100071 1909100077	
METHOD BLANK: 32401	9						
Associated Lab Samples:	1909090006	1909100073	1909100067	1909090046	1909100075	1909100077	
	1909090005	1909100068	1909100071	1909090007	1909090008	1909100065	
	1909100070 1909100078	1909100069 1909100066	1909100072	1909100074	1909100076	1909100079	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Carbon,Organic,Dissolved		ND -	1.0	mg/L	0.35		
	1	ND	1.0	mg/L	0.35		
METHOD BLANK: 32402	1 1909090006	ND 1909100073	1.0	mg/L 1909090046	0.35	1909100077	
METHOD BLANK: 32402							
METHOD BLANK: 32402	1909090006	1909100073	1909100067	1909090046	1909100075	1909100077	
Carbon,Organic,Dissolved METHOD BLANK: 32402 Associated Lab Samples: Parameter	1909090006 1909090005 1909100070	1909100073 1909100068 1909100069	1909100067 1909100071	1909090046 1909090007	1909100075 1909090008	1909100077 1909100065	
METHOD BLANK: 32402 Associated Lab Samples:	1909090006 1909090005 1909100070	1909100073 1909100068 1909100069 1909100066 Blank	1909100067 1909100071 1909100072 Reporting	1909090046 1909090007 1909100074	1909100075 1909090008 1909100076	1909100077 1909100065 1909100079	
METHOD BLANK: 32402 Associated Lab Samples: Parameter Carbon,Organic,Dissolved	1909090006 1909090005 1909100070 1909100078	1909100073 1909100068 1909100069 1909100066 Blank Result	1909100067 1909100071 1909100072 Reporting Limit	1909090046 1909090007 1909100074 Units	1909100075 1909090008 1909100076 MDL	1909100077 1909100065 1909100079	
METHOD BLANK: 32402 Associated Lab Samples: Parameter	1909090006 1909090005 1909100070 1909100078	1909100073 1909100068 1909100069 1909100066 Blank Result ND	1909100067 1909100071 1909100072 Reporting Limit 1.0	1909090046 1909090007 1909100074 Units	1909100075 1909090008 1909100076 MDL	1909100077 1909100065 1909100079 Qualifier	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 53 of 93

QUALITY CONTROL DATA

Work Order No:	72538				
Project ID:	SRINCS Study				
LABORATORY CC	NTROL SAMPLE:	LCS-324022			
Para	meter	LCS % Rec	% Rec Limits	Qualifier	
Carbon,Organic,E	Dissolved	97	90-110	a <u>padak</u> ing dari	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: MS-324017 MSD-324018

Associated Lab Sample: 1909100067

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Carbon,Organic,Dissolved	85	96	66-127	4.1	13.4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 54 of 93

QUALITY CONTROL DATA

QC Batch: TOC/1554		Analysis Meth	od:	SM 5310 B	
QC Batch Method: SM 5310 B		Analysis Desc			by Combustion,Oxidation
Associated Lab Samples: 19091	00067		· · · · ·	× 27	- "
METHOD BLANK: 324023					
Associated Lab Samples: 19091	00067				
Parameter	Blank Result	Reporting Limit	Units	MDL	Qualifier
Carbon, Inorganic, Dissolved	ND	1.0	mg/L	NA	
METHOD BLANK: 324032					
	00067				
	Blank	Reporting			
Parameter	Result	Limit	Units	MDL	Qualifier
Carbon,Inorganic,Dissolved	ND	1.0	mg/L	NA	
METHOD BLANK: 324035					
	00067				
Associated Lab Samples: 19091					
	Blank	Reporting			
Associated Lab Samples: 19091 Parameter	Blank Result	Reporting Limit	Units	MDL	Qualifier
			Units mg/L	MDL NA	Qualifier
Parameter	ND	Limit		s s <u></u>	Qualifier
Parameter Carbon,Inorganic,Dissolved	Result ND	Limit		s s <u></u>	Qualifier
Parameter Carbon,Inorganic,Dissolved 	Result ND	Limit 1.0	mg/L	s s <u></u>	Qualifier
Parameter Carbon,Inorganic,Dissolved 	Result ND : LCS-324027	Limit 1.0	mg/L % Rec	s s <u></u>	
Parameter Carbon,Inorganic,Dissolved ABORATORY CONTROL SAMPLE Parameter		Limit 1.0 LCS % Rec	mg/L % Rec Limits	s s <u></u>	
Parameter Carbon,Inorganic,Dissolved ABORATORY CONTROL SAMPLE Parameter Carbon,Inorganic,Dissolved	Result ND : LCS-324027	Limit 1.0 LCS % Rec	mg/L % Rec Limits	s s <u></u>	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 55 of 93

QUALITY CONTROL DATA

Work Order No:	72538				
Project ID:	SRINCS Study				
LABORATORY CO	NTROL SAMPLE:	LCS-324033			
Para	imeter	LCS	% Rec		
		% Rec	Limits	Qualifier	
Carbon,Inorganic	Dissolved	75	80-120	[7]	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: MS-324030 MSD-324031

Associated Lab Sample: 1909100067

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Carbon,Inorganic,Dissolved	47	64	66-127	3	11.5	[6]

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 56 of 93

286

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRINCS	s Study						
QC Batch: QC Batch Method		/66213 0200 H		Analysis Method Analysis Descrip		10200 H rophyll 'a'		
Associated Lab Sa Associated Lab Sa		1909120032 1909120038	1909120033	1909120034	190912003	5 1909120036	1909120037	
METHOD BLANK	32410	7						
Associated Lab Sa	amples:	1909120033 1909120036	1909120034	1909120035	190912003	3 1909120032	1909120037	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 57 of 93

QUALITY CONTROL DATA

Work Order No: 72538 Project ID: SRiNCS Study						
QC Batch: FLD/41390 QC Batch Method: EPA 180.1		(J		EPA 180.1 Turbidity by Turbidimeter		
Associated Lab Samples: 190909		1909090007	1909090008	,,		
METHOD BLANK: 324109						
Associated Lab Samples: 190909	00006 1909090005	1909090007	1909090008			
Parameter	Blank Result	Reporting Limit	Units	MDL	Qualifier	
Turbidity(Field)	ND	1.0	NTU	NA		
ABORATORY CONTROL SAMPLE: Parameter	LCS-324110 LCS		% Rec			
	% Re	<u> </u>	Limits		Qualifier	
Turbidity(Field)	105		90-111			
ABORATORY CONTROL SAMPLE:	LCS-324111					
Parameter	LCS % Re		% Rec Limits		Qualifier	
Turbidity(Field)	104		90-111			
ABORATORY CONTROL SAMPLE:	LCS_RL-324112					
Parameter	LCS % Re	c	% Rec Limits		Qualifier	
Turbidity(Field)	112		80-133			
SAMPLE DUPLICATE:	324113					
Associated Lab Sample:	1909090005		Max			
Parameter	RPD		RPD	·	Qualifier	
Turbidity(Field)	4.6	_	9.5			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 58 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRINCS	Study					
QC Batch: QC Batch Method:		66214 0200 H		Analysis Method Analysis Descrip		10200 H rophyll 'a'	
Associated Lab Sa Associated Lab Sa		1909120039 1909120045	1909120040	1909120041	190912004	2 1909120043	1909120044
METHOD BLANK:	324119	.					
Associated Lab Sa	amples:	, 1909120040 1909120043	1909120041	1909120042	190912004	5 1909120039	1909120044

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 59 of 93

QUALITY CONTROL DATA

Project ID: SRiNCS							
	Study						
C Batch: LACH	H/10071	ŀ	analysis Method	: EPA 3	50.1		
	350.1		nalysis Descrip		onia by Automated	Colorimetry	
Associated Lab Samples:	1909100065	1909100066	1909100067	1909100068	1909100070	1909100078	
Associated Lab Samples:	1909100079 1909110072 1909120045	1909110059 1909120032	1909110060 1909120033	1909110061 1909120034	1909110062 1909120035	1909110064 1909120037	
METHOD BLANK: 32412	9						
Associated Lab Samples:	1909100067	1909110059	1909120033	1909110061	1909100068	1909100065	
	1909110060	1909110062	1909120045	1909100070	1909120034	1909120035	
	1909120032	1909100079	1909120037	1909100078	1909110064	1909100066	
	1909110072						
		Blank	Reporting				
Parameter	<u> </u>	Result	Limit	Units	MDL	Qualifier	
Nitrogen,Ammonia(as N)		0.0068J	0.50	mg/L	0.0000010		
ABORATORY CONTROL S Parameter	AMPLE: L	CS-324130 LCS % Re	c	% Rec Limits	Qua	ifier	
Nitrogen,Ammonia(as N)		105		90-110			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 60 of 93

QUALITY CONTROL DATA

Study 1/10072 350.1 1909100071		Analysis Method	: EPA 3	50.1		
350.1 1909100071		0	: EPA 3	50.1		
1909100071	/					
		Analysis Descrip	tion: Ammo	onia by Automated	Colorimetry	
1909110065 1909110073 1909120043	1909100072 1909110066 1909120038	1909100073 1909110067 1909120039	1909100074 1909110068 1909120040	1909100075 1909110069 1909120041	1909100076 1909110070 1909120042	
4						
1909120040 1909120042 1909100074 1909120043	1909100073 1909110065 1909100076	1909120041 1909110073 1909110067	1909100075 1909120038 1909110069	1909100071 1909100072 1909120039	1909110066 1909110068 1909110070	
	Blank Result	Reporting Limit	Units	MDL	Qualifier	
	0.0016J	0.50	mg/L	0.0000010		
AMPLE: L	CS-324135					
			% Rec Limits	Qua	ifier	
	108		90-110	1		
	ATE: MS-3241 MS <u>% Rec</u>	36 MSD % Rec	% F		Max RPD Qualifier	
	1909120040 1909120042 1909100074 1909120043	1909120040 1909100073 1909120042 1909110065 1909100074 1909100076 1909120043 Blank Result 0.0016J AMPLE: LCS-324135 LCS % Re 108 SPIKE DUPLICATE: MS-3241 09120038 MS	1909120040 1909100073 1909120041 1909120042 1909110065 1909110073 1909100074 1909100076 1909110067 1909120043 Blank Reporting	1909120040 1909100073 1909120041 1909100075 1909120042 1909110065 1909110073 1909120038 1909100074 1909100076 1909110067 1909110069 1909120043 Blank Reporting Limit Units 0.0016J 0.50 mg/L mg/L MPLE: LCS % Rec Limits 108 90-110 90-110 90-110	1909120040 1909100073 1909120041 1909100075 1909100071 1909120042 1909110065 1909110073 1909120038 1909100072 1909100074 1909100076 1909110067 1909110069 1909120039 1909120043 Blank Reporting MDL	1909120040 1909100073 1909120041 1909100075 1909100071 1909110066 1909120042 1909110065 1909110067 1909120038 1909100072 1909110068 1909120043 1909100076 1909110067 1909110069 1909120039 1909110070 1909120043 Blank Reporting Units MDL Qualifier 0.0016J 0.50 mg/L 0.0000010 0.0000010 SPIKE DUPLICATE: MS-324136 MS MS MSD % Rec Max

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 61 of 93

QUALITY CONTROL DATA

Work Order No: 72538 Project ID: SRiNO	CS Study						
QC Batch: LA	CH/10073	,	Analysis Method	: EPA 3	350.1		
QC Batch Method: EP	A 350.1	1	Analysis Descrip	tion: Amm	onia by Automated	Colorimetry	
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100077	1909090006 1909 11 0063	1909090007 1909110071	1909090008 1909120036		1909100069 1909120046	
METHOD BLANK: 324	139						
Associated Lab Samples:	1909110071	1909090006	1909100077	1909090046	1909090005	1909090008	
	1909110063	1909090007	1909100069	1909120046	1909120044	1909120036	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Nitrogen,Ammonia(as N)		0.00 47 J	0.50	mg/L	0.0000010		
ABORATORY CONTROL	SAMPLE: LO	CS-324140					
Parameter		LCS		% Rec			
Nitrogen,Ammonia(as N)		% Re 		Limits 90-110	Qua	lifier	
Nitrogen, Ammonia(as N)		100		00 110			
MATRIX SPIKE & MATRI Associated Lab Sample:		ATE: MS-3241	41 M	SD-324142			
Parameter		MS % Rec	MSD % Rec		Rec nits RPD	Max RPD	Qualifier
Nitrogen,Ammonia(as N)		108	120	70-	130 5.9	10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 62 of 93

Print Date: 03/05/2020

QUALITY CONTROL DATA

Work Order No: 72538						
Project ID: SRiNCS	Study					
QC Batch: TOC/			Analysis Method			
QC Batch Method: SM 53	310 B		Analysis Descrip	tion: Carbor	n,Organic by Cor	nbustion,Oxidation
Associated Lab Samples: Associated Lab Samples:	1909110059 1909110065 1909110071	1909110060 1909110066 1909110072	1909110061 1909110067 1909110073	1909110062 1909110068 1909160014	1909110063 1909110069	1909110064 1909110070
METHOD BLANK: 324155	5					
Associated Lab Samples:	1909110071	1909110059	1909110061	1909110066	1909110060	1909110062
22	1909110063	1909110073	1909110065	1909110068	1909110067	1909110069
	1909110064	1909110070	1909110072			
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
Carbon,Organic,Dissolved		ND	1.0	mg/L	0.35	
Associated Lab Samples:	1909110071 1909110073 1909110064	1909110059 1909110063 1909110070	1909110061 1909110065 1909110072	1909110066 1909110068	1909110060 1909110067	1909110062 1909110069
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
5 B						
Carbon,Organic,Dissolved		0.38J	1.0	mg/L	0.35	
	3	0.38J	1.0	mg/L	0.35	
METHOD BLANK: 324166	6 1909110071	0.38J 1909110059	1.0	mg/L	0.35	1909110062
METHOD BLANK: 324166						1909110062 1909110069
METHOD BLANK: 324166	1909110071	1909110059	1909110061	1909110066	1909110060	
METHOD BLANK: 324166	1909110071 1909110063	1909110059 1909110073	1909110061 1909110065	1909110066	1909110060	
METHOD BLANK: 324166 Associated Lab Samples:	1909110071 1909110063	1909110059 1909110073 1909110070 Blank	1909110061 1909110065 1909110072 Reporting	1909110066 1909110068	1909110060 1909110067	1909110069
METHOD BLANK: 324166 Associated Lab Samples: Parameter	1909110071 1909110063 1909110064	1909110059 1909110073 1909110070 Blank Result	1909110061 1909110065 1909110072 Reporting Limit	1909110066 1909110068 Units	1909110060 1909110067 MDL	1909110069

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 63 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRINCS	Study							
		1909110063 1909110064	1909110073 1909110070	1909110065 1909110072	190911006	8 190911	0067	190911006	9
Parai	meter		Blank Result	Reporting Limit	Units	MDL	·	Qualifier	
Carbon,Organic,D	issolved		ND	1.0	mg/L	0.35			
LABORATORY CO	NTROL S	AMPLE: LO	CS-324159						
Para	meter		LCS % Re		% Rec Limits		Quali	ifier	
Carbon,Organic,D	issolved		92		90-110				
LABORATORY CO	NTROL S	ample: Lo	CS-324165						
Para	meter		LCS % Re		% Rec Limits		Quali	ifier	
Carbon,Organic,D	issolved		99		90-110				
MATRIX SPIKE & Associated Lab Sa			ATE: MS-324	162 M	SD-324163				
Paramete	er		MS % Rec	MSD % Rec		6 Rec .imits	RPD	Max RPD	Qualifier
Carbon,Organic,D	issolved		80	86	6	6-127	3	13.4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 64 of 93

QUALITY CONTROL DATA

QC Batch: FLD/	41395		Analysis Method	: EPA 18	80.1	
	180.1		Analysis Metrica Analysis Descrip		ty by Turbidimete).
Associated Lab Samples: Associated Lab Samples:	1909100065 1909100071 1909100077	1909100066 1909100072 1909100078	1909100067 1909100073	1909100068 1909100074	1909100069 1909100075	1909100070 1909100076
METHOD BLANK: 32420	00					
Associated Lab Samples:	1909100067 1909100065 1909100078	1909100073 1909100070 1909100066	1909100075 1909100069	1909100077 1909100072	1909100068 1909100074	1909100071 1909100076
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
Turbidity(Field)		ND	1.0	NTU -	NA	
ABORATORY CONTROL S	SAMPLE: LC	CS-324201 LCS % Re		% Rec Limits	Qua	lifier
ABORATORY CONTROL S Parameter Turbidity(Field)	Sample: Lo	LCS			Qua	lifier
Parameter Turbidity(Field)	- 0.20082.000/000 0000	LCS % Re		Limits	Qua	lifier
Parameter	- 0.20082.000/000 0000	LCS % Re 99		Limits	Qua	lifier
Parameter Turbidity(Field) _ABORATORY CONTROL \$	- 0.20082.000/000 0000	LCS <u>% Re</u> 99 CS-324202	<u>ec</u>	Limits 90-111	Qua	
Parameter Turbidity(Field) _ABORATORY CONTROL \$	- 0.20082.000/000 0000	LCS <u>% Re</u> 99 CS-324202 LCS	<u>ec</u>	Limits 90-111 % Rec		
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter	SAMPLE: LC	LCS <u>% Re</u> 99 CS-324202 LCS % Re	<u>ec</u>	Limits 90-111 % Rec Limits		
Parameter Turbidity(Field) LABORATORY CONTROL S Parameter Turbidity(Field)	SAMPLE: LC	LCS % Re 99 CS-324202 LCS % Re 100 CS_RL-324203 LCS	ac	Limits 90-111 % Rec Limits 90-111 % Rec	Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL & Parameter Turbidity(Field) ABORATORY CONTROL &	SAMPLE: LC	LCS % Re 99 CS-324202 LCS % Re 100 CS_RL-324203	ac	Limits 90-111 % Rec Limits 90-111		lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field)	SAMPLE: LC	LCS % Re 99 CS-324202 LCS % Re 100 CS_RL-324203 LCS % Re 92	ac	Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier
Parameter Turbidity(Field) LABORATORY CONTROL S Parameter Turbidity(Field) LABORATORY CONTROL S Parameter	SAMPLE: LC	LCS % Re 99 CS-324202 LCS % Re 100 CS_RL-324203 LCS 	ac	Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 65 of 93

QUALITY CONTROL DATA

Work Order No: 72538 Project ID: SRiNCS	Study			
LABORATORY CONTROL S	AMPLE: LCS-324206			
Parameter	LCS % Rec	% Rec Limits	Qualifier	
Turbidity(Field)	100	90-111		
SAMPLE DUPLICATE:	324204			
Associated Lab Sample:	1909100070			
Parameter	RPD	Max RPD	Qualifier	
Turbidity(Field)	0.79	9.5		
SAMPLE DUPLICATE:	324205			
Associated Lab Sample:	1909100068			
Parameter	RPD	Max RPD	Qualifier	
Turbidity(Field)	2.6	9.5		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 66 of 93

QUALITY CONTROL DATA

QC Batch: FLD/	41397			: EPA 18	0.1	
	41397 180.1		Analysis Method Analysis Descrip			
Associated Lab Samples: Associated Lab Samples:	1909110059 1909110065 1909110071	1909110060 1909110066 1909110072	1909110061 1909110067	1909110062 1909110068	ty by Turbidimete 1909110063 1909110069	1909110064 1909110070
METHOD BLANK: 32420	17					
Associated Lab Samples:	1909110071 1909110063 1909110070	1909110059 1909110065 1909110072	1909110061 1909110068	1909110066 1909110067	1909110060 1909110069	1909110062 1909110064
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
Turbidity(Field)		ND	1.0	NTU -	NA	
ABORATORY CONTROL S Parameter	SAMPLE: LC	CS-324208 LCS 		% Rec Limits	Qua	lifier
		LCS			Qua	lifier
Parameter Turbidity(Field)		LCS <u>% Re</u> 97 CS-324209 LCS		Limits 90-111 % Rec		
Parameter Turbidity(Field) ABORATORY CONTROL S		LCS <u>% Re</u> 97 CS-324209		Limits 90-111	Qua Qua	
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter	GAMPLE: LC	LCS % Re 97 CS-324209 LCS % Re		Limits 90-111 % Rec Limits		
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field)	GAMPLE: LC	LCS % Re 97 CS-324209 LCS <u>% Re</u> 93	90	Limits 90-111 % Rec Limits		lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S	GAMPLE: LC	LCS % Re 97 CS-324209 LCS % Re 93 CS_RL-324210 LCS	90	Limits 90-111 % Rec Limits 90-111 % Rec	Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S Parameter	SAMPLE: LC	LCS % Re 97 CS-324209 LCS % Re 93 CS_RL-324210 LCS 	90	Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field)	SAMPLE: LC	LCS % Re 97 2S-324209 LCS % Re 93 2S_RL-324210 LCS % Re 91	ec	Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 67 of 93

QUALITY CONTROL DATA

Work Order No: 72538 Project ID: SRINCS Stu	idy			
LABORATORY CONTROL SAMI	PLE: LCS-324213			
Parameter	LCS % Rec	% Rec Limits	Qualifier	
Turbidity(Field)	92	90-111		
SAMPLE DUPLICATE:	324211			
Associated Lab Sample:	1909110066			
Parameter	RPD	Max RPD	Qualifier	
Turbidity(Field)	0.77	9.5		
SAMPLE DUPLICATE:	324212			
Associated Lab Sample:	1909110072			
Parameter	RPD	Max RPD	Qualifier	
Turbidity(Field)	5.6	9.5		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 68 of 93

QUALITY CONTROL DATA

QC Batch: FLD/	/41401	6	Analysis Method	: EPA 18	30.1	
	180.1		Analysis Descrip		ty by Turbidimete	er
Associated Lab Samples: Associated Lab Samples:	1909120032 1909120038 1909120044	1909120033 1909120039 1909120045	1909120034 1909120040	1909120035 1909120041	1909120036 1909120042	1909120037 1909120043
METHOD BLANK: 32426	64					
Associated Lab Samples:	1909120040 1909120035 1909120036	1909120041 1909120038 1909120043	1909120033 1909120032	1909120042 1909120037	1909120045 1909120039	1909120034 1909120044
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
Turbidity(Field)		ND	1.0	NTU	NA	
ABORATORY CONTROL S	Sample: Lo	CS-324265 LCS % Re		% Rec Limits	Qua	lifier
Parameter Turbidity(Field)	- 0.20082.000/00 0000	LCS % Re 98			Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL S	- 0.20082.000/00 0000	LCS <u>% Re</u> 98 CS-324266		Limits 90-111	Qua	lifier
Parameter Turbidity(Field)	- 0.20082.000/00 0000	LCS % Re 98	<u> </u>	Limits	Qua Qua	
Parameter Turbidity(Field) ABORATORY CONTROL S	- 0.20082.000/00 0000	LCS <u>% Re</u> 98 CS-324266 LCS	<u> </u>	Limits 90-111 % Rec		
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter	SAMPLE: LC	LCS <u>% Re</u> 98 CS-324266 LCS % Re	<u> </u>	Limits 90-111 % Rec Limits		
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field)	SAMPLE: LC	LCS % Re 98 CS-324266 LCS % Re 102 CS_RL-324267 LCS		Limits 90-111 % Rec Limits 90-111 % Rec	Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S	SAMPLE: LC	LCS % Re 98 CS-324266 LCS % Re 102 CS_RL-324267		Limits 90-111 % Rec Limits 90-111		lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S Parameter	SAMPLE: LC	LCS % Re 98 CS-324266 LCS % Re 102 CS_RL-324267 LCS 		Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier
Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field) ABORATORY CONTROL S Parameter Turbidity(Field)	SAMPLE: LC	LCS % Re 98 CS-324266 LCS % Re 102 CS_RL-324267 LCS % Re 97		Limits 90-111 % Rec Limits 90-111 % Rec Limits	Qua	lifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 69 of 93

QUALITY CONTROL DATA

Work Order No: 725 Project ID: SRi	38 NCS Study				
LABORATORY CONTRO	DL SAMPLE: LCS	3-324270			
Parameter		LCS	% Rec		
Turbidity(Field)		% Rec 100	Limits 90-111	Qualifier	
aconservation for the state of the		+000019079			
SAMPLE DUPLICATE:	3242	58			
Associated Lab Sample	: 190	9120036			
_			Max		
Paramete	r	RPD	RPD	Qualifier	
Turbidity(Field)		4	9.5		
SAMPLE DUPLICATE:	3242	59			
Associated Lab Sample	: 190	9120040			
			Max		
Paramete	r	RPD	RPD	Qualifier	
Turbidity(Field)		3	9.5		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Print Date: 03/05/2020

Page 70 of 93

QUALITY CONTROL DATA

Nork Order No: 72538						
Project ID: SRINCS	Study					
QC Batch: TOC/	EEC	1	Analysia Mathad	: SM 53	10 P	
			Analysis Method			
QC Batch Method: SM 53	510 B		Analysis Descrip		n,Organic by Cor	nbustion,Oxidation
Associated Lab Samples:	1909090005	1909090006	1909090007	1909110059	1909110060	1909110061
Associated Lab Samples:	1909110062 1909110068	1909110063 1909110069	1909110064 1909110070	1909110065 1909110071	1909110066 1909110072	1909110067 1909110073
	1000110000	1000110000	1000110070	1000110011	1000110072	1000110010
METHOD BLANK: 324488	3					
Associated Lab Samples:	1909090006	1909110071	1909090005	1909110059	1909110061	1909110066
	1909090007	1909110060	1909110062	1909110063	1909110065	1909110073
	1909110068	1909110067	1909110069	1909110064	1909110070	1909110072
_		Blank	Reporting		10020	
Parameter		Result	Limit	Units	MDL	Qualifier
Out of the second second second			12.12		12200-0227	
METHOD BLANK: 324497		ND 1909110071	1.0	mg/L	NA 1909110061	1909110066
Carbon,Inorganic,Dissolved METHOD BLANK: 324497 Associated Lab Samples:	7 1909090006 1909110073 1909110068	ND 1909110071 1909090007 1909110067	1.0 1909090005 1909110060 1909110069	mg/L 1909110059 1909110062 1909110064	NA 1909110061 1909110063 1909110070	1909110066 1909110065 1909110072
METHOD BLANK: 324497	1909090006 1909110073	1909110071 1909090007	1909090005 1909110060	1909110059 1909110062	1909110061 1909110063	1909110065 1909110072
METHOD BLANK: 324497 Associated Lab Samples: Parameter	1909090006 1909110073	1909110071 1909090007 1909110067 Blank Result	1909090005 1909110060 1909110069 Reporting Limit	1909110059 1909110062 1909110064 Units	1909110061 1909110063 1909110070	1909110065
METHOD BLANK: 324497 Associated Lab Samples:	1909090006 1909110073 1909110068	1909110071 1909090007 1909110067 Blank	1909090005 1909110060 1909110069 Reporting	1909110059 1909110062 1909110064	1909110061 1909110063 1909110070 MDL	1909110065 1909110072
METHOD BLANK: 324497 Associated Lab Samples: Parameter Carbon,Inorganic,Dissolved	1909090006 1909110073 1909110068	1909110071 1909090007 1909110067 Blank Result	1909090005 1909110060 1909110069 Reporting Limit	1909110059 1909110062 1909110064 Units	1909110061 1909110063 1909110070 MDL	1909110065 1909110072
METHOD BLANK: 324497 Associated Lab Samples: Parameter Carbon,Inorganic,Dissolved METHOD BLANK: 324499	1909090006 1909110073 1909110068	1909110071 1909090007 1909110067 Blank Result ND	1909090005 1909110060 1909110069 Reporting Limit 1.0	1909110059 1909110062 1909110064 Units mg/L	1909110061 1909110063 1909110070 MDL NA	1909110065 1909110072 Qualifier
METHOD BLANK: 324497 Associated Lab Samples: Parameter Carbon,Inorganic,Dissolved METHOD BLANK: 324499	1909090006 1909110073 1909110068	1909110071 1909090007 1909110067 Blank Result ND 1909110071	1909090005 1909110060 1909110069 Reporting Limit 1.0 1909090005	1909110059 1909110062 1909110064 Units mg/L 1909110059	1909110061 1909110063 1909110070 MDL NA	1909110065 1909110072 Qualifier 1909110066
METHOD BLANK: 324497 Associated Lab Samples: Parameter Carbon,Inorganic,Dissolved METHOD BLANK: 324499	1909090006 1909110073 1909110068 	1909110071 1909090007 1909110067 Blank Result ND 1909110071 1909110060	1909090005 1909110060 1909110069 Reporting Limit 1.0 1909090005 1909110062	1909110059 1909110062 1909110064 Units mg/L 1909110059 1909110053	1909110061 1909110063 1909110070 MDL NA 1909110061 1909110065	1909110065 1909110072 Qualifier 1909110066 1909110073
METHOD BLANK: 324497 Associated Lab Samples: Parameter Carbon,Inorganic,Dissolved METHOD BLANK: 324498 Associated Lab Samples:	1909090006 1909110073 1909110068 	1909110071 1909090007 1909110067 Blank Result ND 1909110071 1909110060 1909110067 Blank	1909090005 1909110060 1909110069 Reporting Limit 1.0 1909090005 1909110062 1909110069 Reporting	1909110059 1909110062 1909110064 Units mg/L 1909110059 1909110063 1909110064	1909110061 1909110063 1909110070 MDL NA 1909110061 1909110065 1909110070	1909110065 1909110072 Qualifier 1909110066 1909110073 1909110072

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 71 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRiNCS Study				
LABORATORY CO	ONTROL SAMPLE:	LCS-324492			
Para	ameter	LCS % Rec	% Rec Limits	Qualifier	
Carbon,Inorganic	,Dissolved	88	80-120		
LABORATORY CC	NTROL SAMPLE:	LCS-324498			
Para	ameter	LCS	% Rec		
		% Rec	Limits	Qualifier	
Carbon,Inorganic	,Dissolved	91	80-120		

MSD-324496

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: MS-324495 Associated Lab Sample: 1909110072

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Carbon,Inorganic,Dissolved	76	89	66-127	6.3	11.5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 72 of 93

Print Date: 03/05/2020

QUALITY CONTROL DATA

Work Order No: 72538						
Project ID: SRiNCS	Study					
QC Batch: TOC/	1557		Analysis Method	: SM 53	10 B	
QC Batch Method: SM 53			Analysis Descrip			nbustion,Oxidation
Associated Lab Samples: Associated Lab Samples:	1909120032 1909120038 1909120044	1909120033 1909120039 1909120045	1909120034 1909120040 1909120046	1909120035 1909120041	1909120036 1909120042	1909120037 1909120043
METHOD BLANK: 32450	5					
Associated Lab Samples:	1909120040	1909120041	1909120033	1909120042	1909120045	1909120034
	1909120035 1909120044	1909120038 1909120036	1909120032 1909120043	1909120037	1909120046	1909120039
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
	4	ND	1.0	mg/L	0.35	
METHOD BLANK: 324514	4 1909120040 1909120035 1909120044	ND 1909120041 1909120038 1909120036	1.0 1909120033 1909120032 1909120043	mg/L 1909120042 1909120037	0.35 1909120045 1909120046	1909120034 1909120039
METHOD BLANK: 324514	1909120040 1909120035	1909120041 1909120038	1909120033 1909120032	1909120042	1909120045	
METHOD BLANK: 32451/ Associated Lab Samples: Parameter	1909120040 1909120035	1909120041 1909120038 1909120036 Blank	1909120033 1909120032 1909120043 Reporting	1909120042 1909120037	1909120045 1909120046	1909120039
METHOD BLANK: 324514 Associated Lab Samples: Parameter Carbon,Organic,Dissolved	1909120040 1909120035 1909120044	1909120041 1909120038 1909120036 Blank Result	1909120033 1909120032 1909120043 Reporting Limit	1909120042 1909120037 Units	1909120045 1909120046 MDL	1909120039
Associated Lab Samples: Parameter Carbon,Organic,Dissolved	1909120040 1909120035 1909120044	1909120041 1909120038 1909120036 Blank Result	1909120033 1909120032 1909120043 Reporting Limit	1909120042 1909120037 Units	1909120045 1909120046 MDL	1909120039
METHOD BLANK: 324514 Associated Lab Samples: Parameter Carbon,Organic,Dissolved METHOD BLANK: 324515	1909120040 1909120035 1909120044 	1909120041 1909120038 1909120036 Blank Result ND 1909120041 1909120038	1909120033 1909120032 1909120043 Reporting Limit 1.0 1909120033 1909120032	1909120042 1909120037 Units mg/L 1909120042	1909120045 1909120046 MDL 0.35 1909120045	1909120039 Qualifier 1909120034

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 73 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRiNCS Study				
LABORATORY CC	NTROL SAMPLE:	LCS-324509			
Para	meter	LCS % Rec	% Rec Limits	Qualifier	
Carbon,Organic,E	Dissolved	97	90-110		
LABORATORY CC	NTROL SAMPLE:	LCS-324516			
Para	meter	LCS	% Rec		
		% Rec	Limits	Qualifier	
Carbon,Organic,E	Dissolved	91	90-110		

MSD-324513

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: MS-324512 Associated Lab Sample: 1909120038

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Carbon,Organic,Dissolved	100	101	66-127	0.33	13.4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 74 of 93

Print Date: 03/05/2020

QUALITY CONTROL DATA

Parameter Carbon,Inorganic,Dissolved	_	ND	1.0	 	NA	
Parameter		Result				
		Blank Result	Reporting Limit	Units	MDL	Qualifier
	1909120036	1909120043				
	1909100079	1909120037	1909120046	1909100078	1909120039	1909120044
	1909120045	1909100076	1909120034	1909120035	1909120038	1909120032
METHOD BLANK: 32452	8 1909120040	1909100075	1909100077	1909120041	1909120033	1909120042
_			1.000 1 00		40402409	
Carbon,Inorganic,Dissolved		ND	1.0		NA	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
	1909120036	1909120043				
	1909120046	1909100079	1909120037	1909100078	1909120039	1909120044
	1909120045	1909100076	1909120034	1909120035	1909120038	1909120032
METHOD BLANK: 324520 Associated Lab Samples:	3 1909120040	1909100075	1909100077	1909120041	1909120033	1909120042
Carbon, Inorganic, Dissolved		ND	1.0	mg/L	NA	
Parameter		Result	Limit –	Units -	MDL	Qualifier
		Blank	Reporting			
	1909120036	1909120043				
	1909100079	1909120037	1909120046	1909100078	1909120039	1909120044
- menanenenenenen samuele - mananenenen - en 👫 🕮	1909120045	1909100076	1909120034	1909120035	1909120038	1909120032
METHOD BLANK: 32451	7 1909120040	1909100075	1909100077	1909120041	1909120033	1909120042
	1909120039 1909120045	1909120040 1909120046	1909120041	1909120042	1909120043	1909120044
Associated Lab Samples: Associated Lab Samples:	1909100075 1909120033	1909100076 1909120034	1909100077 1909120035	1909100078 1909120036	1909100079 1909120037	1909120032 1909120038
QC Batch Method: SM 5	310 B		Analysis Descrip	tion: Carbor	n,Organic by Cor	nbustion,Oxidation
QC Batch: TOC/	1558		Analysis Method	: SM 53	10 B	
Project ID: SRiNCS	Study					

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100 Page 75 of 93

Print Date: 03/05/2020

Carbon, Inorganic, Dissolved

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

QUALITY CONTROL DATA

Work Order No:	72538				
Project ID:	SRINCS Study				
ABORATORY CO	ONTROL SAMPLE:	LCS-324521			
Para	ameter	LCS % Rec	% Rec Limits	Qualifier	
Carbon,Inorganic	,Dissolved	95	80-120		
ABORATORY CO	ONTROL SAMPLE:	LCS-324527			
Para	ameter	LCS % Rec	% Rec Limits	Qualifier	
Carbon, Inorganic	,Dissolved	84	80-120		
	MATRIX SPIKE DUPL	ICATE: MS-324524	MSD-324525		
	MATRIX SPIKE DUPL ample: 1909120038	ICATE: MS-324524 MS		Rec Ma	x

67

49

66-127 4

11.5

[5]

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 76 of 93

QUALITY CONTROL DATA

QC Batch: MET	P/6047	1	Analysis Method	: EPA 20	00.8		
QC Batch Method: EPA	200.8	5	Analysis Descrip	tion: Total R	ecoverable Meta	ls Prep	
Associated Lab Samples: Associated Lab Samples:	1909100078 1909120036 1909120042	1909100079 1909120037 1909120043	1909120032 1909120038 1909120044	1909120033 1909120039 1909120045	1909120034 1909120040 1909120046	1909120035 1909120041	
METHOD BLANK: 32466	8						
Associated Lab Samples:	1909120040	1909120041	1909120033	1909120042	1909120045	1909120034	l.
	1909120035 1909120039	1909120038 1909120044	1909120032 1909100078	1909120037 1909120036	1909120046 1909120043	1909100079	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	_
Silica(SiO2)		ND	50	ug/L	21		
LABORATORY CONTROL Parameter	SAMPLE & LC	SD: LCS-3 LCS <u>% Rec</u>	LCSD % Rec	CSD-324670 % Rec Limit	RPD	Max RPD	
Parameter	SAMPLE & LCS	LCS	LCSD	% Rec	 0.28		
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 103	LCSD <u>% Rec</u> 103	% Rec Limit		RPD	
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX	SPIKE DUPLIC	LCS <u>% Rec</u> 103	LCSD <u>% Rec</u> 103	% Rec Limit 85-115	0.28	RPD	Qualifier
Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 19	SPIKE DUPLIC	LCS <u>% Rec</u> 103 ATE: MS-3246 MS	LCSD <u>% Rec</u> 103 371 MS	% Rec Limit 85-115 SD-324672 % Re	ec ts RPD	<u>RPD</u> 20.7 Max	Qualifier
Parameter Silica(SiO2) MATRIX SPIKE & MATRIX Associated Lab Sample: 19 Parameter	SPIKE DUPLIC	LCS <u>% Rec</u> 103 ATE: MS-3246 <u>MS</u> <u>% Rec</u> 120	LCSD <u>% Rec</u> 103 371 MS <u>% Rec</u> 113	% Rec Limit 85-115 SD-324672 % R Limi	ec ts RPD	RPD 20.7 Max RPD	Qualifier

Print Date: 03/05/2020

Page 77 of 93

Work Order No: 72538

Sacramento Regional County Sanitation District Regional San Environmental Laboratory 8521 Laguna Station Road Elk Grove, CA 95758 Phone: (916) 875-9000 Fax: (916) 875-9069

QUALITY CONTROL DATA

Project ID:	SRiNCS Study						
MATRIX SPIKE	& MATRIX SPIKE DUPLI	CATE: MS-324673	MSD-32	4674			
Associated Lab	Sample: 1909120033						
		MS	MSD	% Rec		Max	
Param	eter	% Rec	% Rec	Limits	RPD	RPD	Qualifier
	-35						
Silica(SiO2)		105	108	70-130	0.64	20.7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 78 of 93

QUALITY CONTROL DATA

QC Batch: TOC/	1559		Analysis Method	: SM 53	10 B	
QC Batch Method: SM 53			Analysis Method Analysis Descrip			nbustion.Oxidation
Associated Lab Samples: Associated Lab Samples:	1909090008 1909100070	1909090046 1909100071	1909100065 1909100072	1909100066 1909100073	1909100068 1909100074	1909100069 1909120038
METHOD BLANK: 324742	2					
Associated Lab Samples:	1909100073	1909090046	1909100068	1909100071	1909090008	1909100065
	1909100070	1909100069	1909100072	1909100074	1909120038	1909100066
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier
Carbon, Inorganic, Dissolved		ND	1.0	mg/L	NA	
METHOD BLANK: 324852 Associated Lab Samples:	2 1909100073	1909090046	1909100068	1909100071	1909090008	1909100065
Associated Lab Gampies.	1909100070	1909100069	1909100072	1909100074	1909120038	1909100066
Parameter	_	Blank Result	Reporting Limit	Units -	MDL	Qualifier
Carbon,Inorganic,Dissolved		ND	1.0	mg/L	NA	
METHOD BLANK: 324853	3					
Associated Lab Samples:	1909100073	1909090046	1909100068	1909100071	1909090008	1909100065
	1909100070	1909100069	1909100072	1909100074	1909120038	1909100066
Parameter		Blank Result	Reporting Limit	Units -	MDL	Qualifier
Carbon,Inorganic,Dissolved		ND	1.0	mg/L	NA	
ABORATORY CONTROL S	ample: L'	CS-324746 LCS	5	% Rec		
Parameter		% Re	ec	Limits	∩ ⊔a	lifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 79 of 93

QUALITY CONTROL DATA

Work Order No: Project ID:	72538 SRiNCS Study				
_ABORATORY CC	NTROL SAMPLE: L	CS-324854			
Para	meter	LCS % Rec	% Rec Limits	Qualifier	
Carbon, Inorganic,	Dissolved	80	80-120		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: MS-324749 MSD-324750

	MS	MSD	% Rec		Max	
Parameter	% Rec	% Rec	Limits	RPD	RPD	Qualifier
Carbon, Inorganic, Dissolved	118	131	66-127	2.8	11.5	[5]

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 80 of 93

QUALITY CONTROL DATA

Work Order No: 72538							
Project ID: SRINCS	5 Study						
QC Batch: LACH	H/10100		Analysis Method	I: EPA 3	53.2		
QC Batch Method: EPA	353.2		Analysis Descrip	otion: Nitrite	Nitrogen by Colo	rimetry	
Associated Lab Samples: Associated Lab Samples:	1909100065 1909100079 1909110072 1909120045	1909100066 1909110059 1909120032	1909100067 1909110060 1909120033	1909100068 1909110061 1909120034	1909100070 1909110062 1909120035	1909100078 1909110064 1909120037	
METHOD BLANK: 32513	6						
Associated Lab Samples:	1909100067	1909110059	1909120033	1909110061	1909100068	1909100065	
	1909110060	1909110062	1909120045	1909100070	1909120034	1909120035	
	1909120032 1909110072	1909100079	1909120037	1909100078	1909110064	1909100066	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Nitrite(as N)							• 12
		0.0022J CS-325137	0.10	mg/L	0.000010		
		CS-325137 LC:	8	% Rec		lifier	
ABORATORY CONTROL S		CS-325137	8	-		lifier	
ABORATORY CONTROL S Parameter Nitrite(as N)	SAMPLE: L	CS-325137 LC: % R	8	% Rec Limits		lifier	
ABORATORY CONTROL S Parameter Nitrite(as N)	SAMPLE: L	CS-325137 LC: <u>%</u> R 106	S ec	% Rec Limits		lifier	
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S	SAMPLE: L	CS-325137 LC: <u>% R</u> 106 CS-325140	S ec	% Rec Limits 90-110	Qua	lifier	
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S	SAMPLE: L	CS-325137 LC: % R 106 CS-325140 LC:	S ec	% Rec Limits 90-110 % Rec	Qua		[4]
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N)	AMPLE: L	CS-325137 LC: 	S ec S ec	% Rec Limits 90-110 % Rec Limits 90-110	Qua Qua		[4]
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) MATRIX SPIKE & MATRIX	SAMPLE: L	CS-325137 LC: 	S ec S ec	% Rec Limits 90-110 % Rec Limits	Qua Qua		[4]
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter	SAMPLE: L	CS-325137 LC: 	S ec S ec	% Rec Limits 90-110 % Rec Limits 90-110	Qua Qua	lifier	[4] Qualifier
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) MATRIX SPIKE & MATRIX Associated Lab Sample: 15	SAMPLE: L	CS-325137 LC: % R 106 CS-325140 LC: % R 111 111 ATE: MS_WM MS	S ec S ec 12-325138 M3 MSD	% Rec Limits 90-110 % Rec Limits 90-110 SD_W2-325139 % F	Qua Qua	lifier	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 81 of 93

QUALITY CONTROL DATA

	1/10101		Analysia Mathed		E2 0		
	H/10101 353.2		Analysis Method Analysis Descrip		53.2 Nitrogen by Col	orimotor	
Associated Lab Samples: Associated Lab Samples:	1909100071 1909110065	1909100072 1909110066	1909100073 1909110067	1909100074 1909110068	1909100075 1909110069	1909100076 1909110070	
	1909110073 1909120043	1909120038	1909120039	1909120040	1909120041	1909120042	
METHOD BLANK: 32514	2						
Associated Lab Samples:	1909100073	1909120040	1909100075	1909120041	1909100071	1909110066	
	1909120042	1909110065	1909110073	1909100072	1909100074	1909100076	
	1909110068 1909120043	1909120038	1909110067	1909110069	1909110070	1909120039	
Parameter			Reporting	Units	MDL	0	
Tarameter		Result	Limit	Units	NIDE	Qualifier	
Nitrite(as N)		0.0018J CS-325143	0.10	mg/L	0.000010	Quaimer	
Nitrite(as N)		0.0018J	0.10		0.000010	alifier	-
Nitrite(as N) ABORATORY CONTROL S Parameter		0.0018J CS-325143 LCS	0.10	mg/L	0.000010		-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N)	SAMPLE: LO	0.0018J CS-325143 LCS % Re	0.10	mg/L % Rec Limits	0.000010		-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N)	SAMPLE: LO	0.0018J CS-325143 LCS <u>% Re</u> 105	0.10	mg/L % Rec Limits	0.000010		-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S	SAMPLE: LO	0.0018J CS-325143 LCS <u>% Re</u> 105 CS-325146	0.10	% Rec Limits 90-110	0.000010		-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S	SAMPLE: LO	0.0018J CS-325143 LCS % Re 105 CS-325146 LCS	0.10 c	% Rec Limits 90-110 % Rec	0.000010	alifier	-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter	SAMPLE: LO	0.0018J CS-325143 	0.10 c	mg/L % Rec Limits 90-110 % Rec Limits	0.000010	alifier	-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N)	;ample: L(; ;ample: L(0.0018J CS-325143 LCS <u>% Re</u> 105 CS-325146 LCS % Re 110	0.10 c	mg/L % Rec Limits 90-110 % Rec Limits	0.000010	alifier	_
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) MATRIX SPIKE & MATRIX		0.0018J CS-325143 LCS <u>% Re</u> 105 CS-325146 LCS % Re 110 ATE: MS_WN2	0.10 c c 2-325144 MS	mg/L % Rec Limits 90-110 % Rec Limits 90-110 SD_W2-325145	0.000010	alifier	-
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) MATRIX SPIKE & MATRIX Associated Lab Sample: 15		0.0018J CS-325143 LCS % Re 105 CS-325146 LCS % Re 110 ATE: MS_WN2 MS	0.10 c c 2-325144 MS MSD	mg/L % Rec Limits 90-110 % Rec Limits 90-110 SD_W2-325145 % R	0.000010	alifier	- Oualifier
Nitrite(as N) ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S Parameter		0.0018J CS-325143 LCS <u>% Re</u> 105 CS-325146 LCS % Re 110 ATE: MS_WN2	0.10 c c 2-325144 MS	mg/L % Rec Limits 90-110 % Rec Limits 90-110 SD_W2-325145	0.000010	alifier	Qualifier

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 82 of 93

QUALITY CONTROL DATA

QC Batch: LACI	H/10102	ů.	Analysis Method	EPA 3	53.2		
QC Batch Method: EPA	353.2		Analysis Descrip	otion: Nitrite	Nitrogen by Colo	rimetry	
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100077	1909090006 1909110063	1909090007 1909110071	1909090008 1909120036	1909090046 1909120044	1909100069 1909120046	
METHOD BLANK: 32514	18						
Associated Lab Samples:	1909110071	1909090006	1909100077	1909090046	1909090005	1909090007	
	1909110063	1909090008	1909100069	1909120046	1909120044	1909120036	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Nitrite(as N)		0.0022J	0.10	mg/L	0.000010		
		20 225140					
ABORATORY CONTROL S Parameter	SAMPLE: LO	CS-325149 LCS % Re		% Rec Limits	Qua	lifier	
ABORATORY CONTROL S	SAMPLE: LO	LCS			Qua	lífier	
ABORATORY CONTROL S Parameter Nitrite(as N)		LCS % Re		Limits	Qua	lifier	
ABORATORY CONTROL S Parameter Nitrite(as N)		LCS % Re 107	ec	Limits	Qua	lifier	
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S		LCS <u>% Re</u> 107 CS-325171	<u>ec</u>	Limits 90-110		lifier	
ABORATORY CONTROL S Parameter Nitrite(as N) ABORATORY CONTROL S		LCS <u>% Re</u> 107 CS-325171 LCS	<u>ec</u>	Limits 90-110 % Rec			[4]

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Nitrite(as N)	104	105	90-110	1	10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 83 of 93

QUALITY CONTROL DATA

00.0	1140402				50.0		
	H/10103		Analysis Method				
	353.2		Analysis Descrip		e-Nitrite Nitroger	51 (154)	
Associated Lab Samples: Associated Lab Samples:	1909100065 1909100079	1909100066 1909110059	1909100067 1909110060	1909100068 1909110061	1909100070 1909110062	1909100078 1909110064	
Associated Lab Samples.	1909100079 1909110072	1909110039	1909120033	1909120034	1909110082	1909110084	
	1909120045				2550098333 30 30 0001000	 In 12080-04423-022-24794-00428-2608 	
METHOD BLANK: 32517	74						
Associated Lab Samples:	1909100067	1909110059	1909120033	1909110061	1909100068	1909100070	
	1909100065	1909110060	1909110062	1909120045	1909120034	1909120035	
	1909120037	1909120032	1909100079	1909100078	1909110064	1909100066	
	1909110072						
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
rarameter		nesul		·		Qualifier	_3
Niturato (no. NI)							
	SAMPLE: LO	ND CS-325175	0.10	mg/L	0.000010		
	SAMPLE: L(27538 1040 - 01	3	mg/L % Rec Limits		alifier	
ABORATORY CONTROL S	SAMPLE: L(CS-325175 LCS	3	% Rec		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N)		CS-325175 LCS % Re	3	% Rec Limits		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N)		CS-325175 LCS % Re 106	S ac	% Rec Limits		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S		CS-325175 LCS <u>% Re</u> 106 CS-325264	5 	% Rec Limits 90-110	Qu	alifier	
Nitrate(as N) 		CS-325175 LCS <u>% Re</u> 106 CS-325264 LCS	5 	% Rec Limits 90-110 % Rec	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter		CS-325175 LCS <u>% Re</u> 106 CS-325264 LCS <u>% Re</u>	5 	% Rec Limits 90-110 % Rec Limits	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter		CS-325175 LCS <u>% Re</u> 106 CS-325264 LCS <u>% Re</u>	5 	% Rec Limits 90-110 % Rec Limits	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter	SAMPLE: L	CS-325175 LCS % Re 106 CS-325264 LCS % Re 105	5 90 5 90	% Rec Limits 90-110 % Rec Limits	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N)	SAMPLE: LO	CS-325175 LCS % Re 106 CS-325264 LCS % Re 105	5 90 5 90	% Rec Limits 90-110 % Rec Limits 90-110	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N) MATRIX SPIKE & MATRIX Associated Lab Sample: 1	SAMPLE: LO	CS-325175 LCS % Re 106 CS-325264 LCS % Re 105 ATE: MS_WN MS	S S S S S S S S S S S S S S	% Rec Limits 90-110 % Rec Limits 90-110 SD_W3-325177 % F	Qu Qu	nalifier	
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N) MATRIX SPIKE & MATRIX	SAMPLE: LO	CS-325175 LCS % Re 106 CS-325264 LCS % Re 105 ATE: MS_WN	3 3 3 3 3-325176 M	% Rec Limits 90-110 % Rec Limits 90-110 SD_W3-325177	Qu Qu	nalifier	Qualifier

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 84 of 93

QUALITY CONTROL DATA

QC Batch: LAC	H/10104	4	Analysis Method	: EPA 3	53.2		
	353.2		Analysis Descrip		e-Nitrite Nitrogen	by Colorimetry	
Associated Lab Samples: Associated Lab Samples:	1909100071 1909110065 1909110073 1909120043	1909100072 1909110066 1909120038	1909100073 1909110067 1909120039	1909100074 1909110068 1909120040	1909100075 1909110069 1909120041	1909100076 1909110070 1909120042	5
METHOD BLANK: 32518	30						
Associated Lab Samples:	1909100073	1909120040	1909120041	1909100075	1909100071	1909110066	
	1909120042	1909110065	1909110073	1909120038	1909100072	1909110068	
	1909100074 1909120043	1909100076	1909110067	1909110069	1909120039	1909110070	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	_
ABORATORY CONTROL S	SAMPLE: LO	ND CS-325181	0.10	mg/L	0.000010		
	SAMPLE: L(ŝ	% Rec Limits		alifier	
ABORATORY CONTROL S	SAMPLE: L	CS-325181 LCS	ŝ	% Rec		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N)		CS-325181 LCS % Re	ŝ	% Rec Limits		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N)		CS-325181 LCS <u>% Re</u> 101	c	% Rec Limits		alifier	
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S		CS-325181 LCS <u>% Re</u> 101 CS-325265	c	% Rec Limits 90-110	Qu	alifier	
Nitrate(as N) 		CS-325181 LCS <u>% Re</u> 101 CS-325265 LCS	c	% Rec Limits 90-110 % Rec	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N)	SAMPLE: L	CS-325181 LCS % Re 101 CS-325265 LCS % Re 98	c	% Rec Limits 90-110 % Rec Limits 90-110	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N) MATRIX SPIKE & MATRIX	SAMPLE: LO	CS-325181 LCS % Re 101 CS-325265 LCS % Re 98	c	% Rec Limits 90-110 % Rec Limits	Qu		
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N) MATRIX SPIKE & MATRIX Associated Lab Sample: 11	SAMPLE: LO	CS-325181 LCS % Re 101 CS-325265 LCS % Re 98 ATE: MS_WNS MS	c	% Rec Limits 90-110 % Rec Limits 90-110 SD_W3-325183 % R	Qu Qu	alifier	
ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S Parameter	SAMPLE: LO	CS-325181 LCS % Re 101 CS-325265 LCS % Re 98 ATE: MS_WN3	c	% Rec Limits 90-110 % Rec Limits 90-110 SD_W3-325183	Qu Qu	alifier	Qualifier

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 85 of 93

QUALITY CONTROL DATA

	H/10105 353.2		Analysis Method Analysis Descrip		53.2 e-Nitrite Nitrogen I	by Colorimetry	
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100077	1909090006 1909110063	1909090007 1909110071	1909090008 1909120036	1909090046 1909120044	1909100069 1909120046	
METHOD BLANK: 32518	36						
Associated Lab Samples:	1909110071 1909110063	1909090006 1909090008	1909100077 1909100069	1909090046 1909120046	1909090005 1909120044	1909090007 1909120036	
		Blank	Reporting				
Parameter		Result	Limit	Units .	MDL	Qualifier	
Parameter Nitrate(as N)				Units mg/L	MDL	Qualifier	
	SAMPLE: L	Result	Limit			Qualifier	
Nitrate(as N)	SAMPLE: L	ND	Limit		0.000010	Qualifier	
Nitrate(as N) ABORATORY CONTROL S	SAMPLE: L	Result	Limit	mg/L	0.000010		
Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N)		Result ND CS-325187 LCS 	Limit	mg/L % Rec Limits	0.000010		
Nitrate(as N) ABORATORY CONTROL S Parameter		Result ND CS-325187 LCS % Re 102 CS-325266 LCS	Limit 0.10 5 ec	% Rec Limits 90-110	0.000010 Qua	lifier	
Nitrate(as N) ABORATORY CONTROL S Parameter Nitrate(as N) ABORATORY CONTROL S		Result ND CS-325187 LCS % Re 102 CS-325266	Limit 0.10 5 ec	% Rec Limits 90-110	0.000010 Qua		

Parameter	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qualifier
Nitrate(as N)	100	100	90-110	0	10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 86 of 93

QUALITY CONTROL DATA

Project ID:	72538							
nojectio.	SRINCS	Study						
QC Batch:	LACH	1/10108		Analysis Method	: EPA 3(51.2 (LowLevel)		
QC Batch Method:	EPAS	351.2 (LowLeve	el)	Analysis Descrip	tion: TKN b	y Block Digestion	& Colorimetry	
Associated Lab Sa Associated Lab Sa		1909100065 1909100079 1909110072 1909120045	1909100066 1909110059 1909120032	1909100067 1909110060 1909120033	1909100068 1909110061 1909120034	1909100070 1909110062 1909120035	1909100078 1909110064 1909120037	
METHOD BLANK:	32531	6						
Associated Lab Sa	imples:	1909100067	1909110059	1909120033	1909110061	1909100068	1909100065	
		1909110060	1909110062	1909120045	1909100070	1909120034	1909120035	
		1909120032 1909110072	1909100079	1909120037	1909100078	1909110064	1909100066	
Paran	neter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
FKN(as N)DISSOL	VED		ND	0.20	mg/L	0.070		
ABORATORY COI	NTROL S	AMPLE: L	CS-325317					
			LC	e	% Rec			
Paran	neter		LU	3	% Rec			
Parar	neter		% R		% Rec	Qua	lifier	
Paran TKN(as N)DISSOL					5177 SR 1	Qua	lifier	
			% R		Limits	Qua	lifier	
TKN(as N)DISSOL	.VED		<u>%</u> R 106	ec	Limits 90-110	Qua	ifier	
TKN(as N)DISSOL MATRIX SPIKE & I	_VED		<u>% R</u> 106 ATE: MS-325	ec	Limits 90-110 SD-325319			
	VED MATRIX S ample: 19		<u>%</u> R 106	ec	Limits 90-110		ifier Max <u>RPDQualifier</u>	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 87 of 93

QUALITY CONTROL DATA

	72538							
Project ID:	SRINCS	Study						
QC Batch:	LACH	H/10109		Analysis Method	: EPA 3(51.2 (LowLevel)		
QC Batch Method:	EPA 3	351.2 (LowLeve	4)	Analysis Descrip	tion: TKN b	y Block Digestion	& Colorimetry	
Associated Lab Sa Associated Lab Sa		1909100071 1909110065 1909110073 1909120043	1909100072 1909110066 1909120038	1909100073 1909110067 1909120039	1909100074 1909110068 1909120040	1909100075 1909110069 1909120041	1909100076 1909110070 1909120042	
METHOD BLANK:	32532	6						
Associated Lab Sa	mples:	1909120040	1909100073	1909120041	1909100075	1909100071	1909110066	
		1909120042	1909110065	1909110073	1909120038	1909100072	1909110068	
		1909100074	1909100076	1909110067	1909110069	1909120039	1909110070	
		1909120043						
Paran	neter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
FKN(as N)DISSOL	VED		ND	0.20	mg/L	0.070	ideal de Soldan de La Companya de La	
ABORATORY CO	NTROL S	AMPLE: L	CS-325327					
				2				
Parar	neter		LC	5	% Rec			
Parar	neter		LC: % R		% Rec Limits	Qua	lifier	
Parar TKN(as N)DISSOL						Qua	lifier	
	.VED MATRIX		<u>% R</u> 101 АТЕ: MS-325	928 MS	Limits 90-110 SD-325329			
IKN(as N)DISSOL	WED MATRIX		<u>%</u> R 101	ec	Limits 90-110	 ec	Max RPD Qualif	ier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 88 of 93

QUALITY CONTROL DATA

Project ID:	72538 SRiNCS	Study						
QC Batch:	LACH	1/10110		Analysis Method	: EPA 35	51.2 (LowLevel)		
QC Batch Method:	EPA 3	351.2 (LowLeve)	Analysis Descrip	tion: TKN by	Block Digestion	& Colorimetry	
Associated Lab Sa Associated Lab Sa		1909090005 1909100077	1909090006 1909110063	1909090007 1909110071	1909090008 1909120036	1909090046 1909120044	1909100069 1909120046	
METHOD BLANK:	32533	1						
Associated Lab Sa	mples:	1909110071	1909090006	1909100077	1909090046	1909090005	1909090007	
		1909110063	1909090008	1909100069	1909120046	1909120044	1909120036	
Param	neter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
TKN(as N)DISSOL	VED		ND	0.00	mall	0.070		
, , , , , , , , , , , , , , , , , , ,			ND	0.20	mg/L	0.070		
ABORATORY CON Paran TKN(as N)DISSOL	NTROL S	AMPLE: LC	ND CS-325332 LCS <u>% Ri 96</u>	8	% Rec Limits 90-110	Qua	lifier	
ABORATORY CON Paran	NTROL S neter VED MATRIX S	SPIKE DUPLIC	CS-325332 LCS <u>% Rv</u> 96	6 ec	% Rec Limits	Qua	lifier	
ABORATORY CON Paran TKN(as N)DISSOL MATRIX SPIKE & I	NTROL S neter VED MATRIX (mple: 19	SPIKE DUPLIC	2S-325332 LC3 <u>% R4</u> 96 ATE: MS-325	5 ec 333 M:	% Rec Limits 90-110	Qua	Max	Qualifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 89 of 93

QUALITY CONTROL DATA

Work Order No:	72538							
Project ID:	SRINCS	Study						
QC Batch:	LACH	H/10111		Analysis Method	: EPA 3	65.4		
QC Batch Method:				Analysis Description: Phosphorus by Automated Colorimetry				
Associated Lab Samples: 1909100065		1909100066	1909100066 1909100067 1909100068 1909100070 1909100078					
Associated Lab Samples:		1909100079		1909110060	1909110061	1909110062	1909110064	
		1909110072 1909120045		1909120033	1909120034	1909120035	1909120037	
METHOD BLANK:	32533	6						
Associated Lab Sa	mples:	1909100067	1909110059	1909120033	1909110061	1909100068	1909100065	
		1909110060	1909110062	1909120045	1909100070	1909120034	1909120035	
		1909120032	1909100079	1909120037	1909100078	1909110064	1909100066	
		1909110072						
			Blank	Reporting				
Paran	neter	<u>.</u>	Result	Limit	Units	MDL	Qualifier	
Phosphorus, Diss(as P)			0.0023J	0.20	mg/L	0.000010		
ABORATORY COI Parar		SAMPLE:	LCS-325337 LCS	5	% Rec			
		% Rec		Limits Qua		alifier		
Phosphorus,Diss(as P)		101		90-110				
MATRIX SPIKE & Associated Lab Sa			CATE: MS_D-3 MS	25343 M	SD_D-325344 % F	3ec	Мах	
Parameter		% Rec	% Rec	Lim			alifier	
Phosphorus,Diss(as P)			103	100	90-	110 2.8	10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 90 of 93

QUALITY CONTROL DATA

Work Order No:	72538							
Project ID:	SRINCS	S Study						
QC Batch:		H/10112		Analysis Method	EPA 3	865 A		
QC Batch Method:		365.4		Analysis Method Analysis Descrip			ted Colorimetry	
Associated Lab Samples: Associated Lab Samples:		1909100071 1909110065	1909100072 1909110066	1909100073 1909110067	1909100074 1909110068	1909100075 1909110069	1909100076 1909110070	
		1909110065	1909110088	1909110087	1909110066		1909120042	
		1909120043	1000120000	1000120000	1000120010	1000120011	1000120012	
METHOD BLANK:	32533	9						
Associated Lab Sa	mples:	1909120040	1909100073	1909120041	1909100075	1909100071	1909110066	
		1909120042	1909110073	1909110065	1909120038	1909100072	1909110068	
		1909100074	1909100076	1909110067	1909110069	1909120039	1909110070	
		1909120043						
			Blank	Reporting				
Parameter			Result	Limit	Units	MDL	Qualifier	
Phosphorus, Diss(as P)			ND -	0.20	mg/L	0.000010		
r nosphorus, Diss(as r)								
ABORATORY CO	NTROL S	AMPLE: L	CS-325340					
Parameter			LC		% Rec			
		% Rec		Limits C		lualifier		
Phosphorus, Diss(a	as P)		103		90-110			
	999.2639 5 93							
MATRIX SPIKE &	MATRIX	SPIKE DUPLIC	ATE: MS_D-3	25341 M	SD D-325342			
Associated Lab Sa								
	F		MS	MSD	% F	Rec	Max	
Parameter			% Rec	% Rec	Lin		RPD Qualifie	er
				-	-	ja k e ka	0. 00 8. 4	-
Dhaanhania Distri			100	400	00	110 0.10	10	
Phosphorus, Diss(as P)			102	102	90-	110 0.19	10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 91 of 93

QUALITY CONTROL DATA

Project ID: SRINCS	3 Study						
C Batch: LACH/10113		1	Analysis Method	: EPA 3	65.4		
QC Batch Method: EPA 365.4		Analysis Description: Phosphorus by Automated Colorimetry					
Associated Lab Samples: Associated Lab Samples:	1909090005 1909100077	1909090006 1909110063	1909090007 1909110071	1909090008 1909120036	1909090046 1909120044	1909100069 1909120046	
METHOD BLANK: 32534	16						
Associated Lab Samples:	1909110071	1909090006	1909100077	1909090046	1909090005	1909090007	
	1909110063	1909090008	1909100069	1909120046	1909120044	1909120036	
Parameter		Blank Result	Reporting Limit	Units	MDL	Qualifier	
Phosphorus,Diss(as P)		0.018J	0.20	mg/L	0.000010		
ABORATORY CONTROL SAMPLE: L(Parameter		CS-325347 LCS % Re		% Rec	Qualifier		
		70 1 1	C	Limits	Qua	lifier	
Phosphorus,Diss(as P)		101	<u> </u>	Limits 90-110	Qua	lifier	
MATRIX SPIKE & MATRIX Associated Lab Sample: 19			25348 MSD	90-110 SD_D-325349 % F	lec	Max	
MATRIX SPIKE & MATRIX			25348 M	90-110 SD_D-325349	lec	Max	Qualifier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100

Print Date: 03/05/2020

Page 92 of 93

QUALITY CONTROL DATA QUALIFIERS

Work Order No:	72538						
Project ID:	SRINCS Study						
QUALITY CONTROL PARAMETER QUALIFIERS							
	Result Qualifiers: These descriptors are used to help identify the specific QC samples and clarify the report.						
	MB - Method Blank.						
	LCS - Laboratory Control Standard.						
	DUP - Duplicate of Original Sample Matrix.						
	MS/MSD - Matrix Spike/Matrix Spike Duplicate.						
	RPD -Relative Percent Difference.						
	% Rec - Spike Recovery stated as a percentage.						
	QC - Total QC applies to total recoverable.						
[4]	The low level LCS is outside of control limits due to increased variability near the reporting limit						
[5]	The matrix spike recovery was outside of control limits, possibly due to matrix interference. The						
L-1	batch was accepted based on other QC data.						
[6]	Matrix spike and matrix spike duplicate are outside of control limits.						

[7] Low LCS recovery due to increased variability near the reporting limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Sacramento Regional County Sanitation District. ELAP Certification #1100
Print Date: 03/05/2020 Page 93 of 93

Appendix 6. Phytoplankton Enumeration Data Table

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
SR1	1000000048 5	DATE	TIME 11:20	Achnanthidium sp.	Desillarianhuta	2	2.38E+05	um ³ /L	
SR1	1909090046-E 1909090046-E		11:20	Aulacoseira sp.	Bacillariophyta Bacillariophyta	2 5	2.38E+05 5.94E+05	1.23E+07 2.92E+08	
SR1	1909090046-E		11:20	Cocconeis placentula	Bacillariophyta	2	2.38E+05	1.53E+08	
SR1	1909090046-E		11:20	Craticula sp.	Bacillariophyta	1	1.19E+05	4.93E+07	
SR1	1909090046-E		11:20	Cyclotella meneghiniana	Bacillariophyta	2	3.63E+04	2.07E+07	
SR1	1909090046-E	9/9/2019 9/9/2019	11:20	Cyclotella sp.	Bacillariophyta Bacillariophyta	2	2.38E+05	5.97E+07	Freemant
SR1 SR1	1909090046-E 1909090046-E		11:20 11:20	Cymatopleura solea Cymbella affinis	Bacillariophyta Bacillariophyta	1 1	1.82E+04 1.19E+05	1.44E+08 1.24E+08	Fragment.
SR1	1909090046-E	9/9/2019	11:20	Diatoma sp.	Bacillariophyta	1	1.19E+05	1.79E+07	
SR1	1909090046-E	9/9/2019	11:20	Epithemia sorex	Bacillariophyta	1	1.82E+04	8.48E+06	
SR1	1909090046-E	9/9/2019	11:20	Fragilaria crotonensis	Bacillariophyta	1	1.19E+05	5.67E+07	
SR1 SR1	1909090046-E 1909090046-E		11:20 11:20	Gomphonema sp. Melosira sp.	Bacillariophyta Bacillariophyta	1	1.82E+04 1.82E+04	5.34E+07 1.51E+08	Fragment.
SR1	1909090046-E		11:20	Navicula spp.	Bacillariophyta	2	2.38E+05	3.45E+08	
SR1	1909090046-E	9/9/2019	11:20	Nitzschia inconspicua	Bacillariophyta	2	2.38E+05	5.35E+06	
SR1	1909090046-E	9/9/2019	11:20	Nitzschia linearis	Bacillariophyta	1	1.82E+04	1.32E+07	_
SR1	1909090046-E	9/9/2019 9/9/2019	11:20	Nitzschia sp. Nitzschia spp.	Bacillariophyta Bacillariophyta	1	1.19E+05	5.70E+06	Fragment.
SR1 SR1			11:20 11:20	Synedra ulna	Bacillariophyta	2 1	3.63E+04 1.19E+05	5.15E+06 4.54E+08	
SR1	1909090046-E		11:20	Synedra ulna	Bacillariophyta	1	1.19E+05	7.39E+07	Fragment.
SR1	1909090046-E		11:20	cf. Thalassiosira sp.	Bacillariophyta	10	1.19E+06	4.48E+07	
SR1	1909090046-E		11:20	Ankistrodesmus nannoselene	Chlorophyta	1	1.19E+05	3.27E+05	
SR1 SR1	1909090046-E 1909090046-E		11:20 11:20	Chlamydomonas spp. Chlorella spp.	Chlorophyta Chlorophyta	3 53	3.56E+05 6.30E+06	3.36E+07 8.90E+07	
SR1	1909090046-E	9/9/2019	11:20	Dictyosphaerium sp.	Chlorophyta	16	2.91E+05	6.85E+06	
SR1	1909090046-E		11:20	Kirchneriella sp.	Chlorophyta	1	1.19E+05	1.49E+06	
SR1	1909090046-E	9/9/2019	11:20	Monoraphidium minutum	Chlorophyta	4	7.26E+04	1.52E+06	
SR1 SR1	1909090046-E 1909090046-E		11:20 11:20	Cryptomonas sp.	Cryptophyta	1 35	1.19E+05	1.18E+08 5.87E+08	
SR1	1909090046-E		11:20	Plagioselmis nannoplanctica Rhodomonas sp.	Cryptophyta Cryptophyta	35	4.16E+06 1.19E+05	1.05E+08	
SR1	1909090046-E		11:20	Chroococcus microscopicus	Cyanobacteria	396	4.71E+07	1.26E+07	
				TOTAL		552	6.27E+07	3.04E+09	
			10.10		-				
SR2 SR2	1909090006-F 1909090006-F	9/9/2019 9/9/2019	12:16 12:16	Achnanthidium minutissimum Cocconeis placentula	Bacillariophyta Bacillariophyta	6 7	4.01E+05	1.26E+07 2.50E+08	
SR2 SR2	1909090006-F	9/9/2019	12:16	Cyclotella sp.	Bacillariophyta	13	4.68E+05 8.69E+05	2.50E+08 2.76E+08	
SR2			12:16	Cymbella sp.	Bacillariophyta	1	1.82E+04	1.45E+07	
SR2	1909090006-F	9/9/2019	12:16	Encyonema sp.	Bacillariophyta	1	1.82E+04	3.73E+06	
SR2	1909090006-F		12:16	Gyrosigma sp.	Bacillariophyta	1	6.68E+04	1.68E+08	
SR2 SR2	1909090006-F 1909090006-F		12:16 12:16	Navicula sp. Nitzschia spp.	Bacillariophyta Bacillariophyta	1 4	6.68E+04 2.67E+05	1.89E+07 2.65E+07	
SR2	1909090006-F		12:16	Synedra sp.	Bacillariophyta	4	2.67E+05	1.25E+08	Fragment.
SR2	1909090006-F	9/9/2019		Synedra sp.	Bacillariophyta	1	6.68E+04	1.70E+08	r reginisite.
SR2	1909090006-F		12:16	cf. Thalassiosira sp.	Bacillariophyta	4	2.67E+05	1.57E+07	
SR2	1909090006-F	9/9/2019	12:16	Ankistrodesmus nannoselene	Chlorophyta	6	4.01E+05	1.06E+06	
SR2 SR2	1909090006-F 1909090006-F	9/9/2019	12:16 12:16	Chlorella sp. Scenedesmus sp.	Chlorophyta Chlorophyta	17 4	1.14E+06 2.67E+05	4.76E+06 7.56E+06	
SR2	1909090006-F		12:16	Cryptomonas sp.	Cryptophyta	2	3.63E+04	3.39E+07	
SR2	1909090006-F		12:16	Plagioselmis nannoplanctica	Cryptophyta	12	8.02E+05	1.03E+08	
SR2	1909090006-F	9/9/2019	12:16	Chroococcus microscopicus	Cyanobacteria	524	3.50E+07	9.39E+06	
				TOTAL		608	4.04E+07	1.24E+09	
SR3	1909090007-F	9/9/2019	12:54	Achnanthidium minutissimum	Bacillariophyta	1	7.64E+04	3.00E+06	
SR3	1909090007-F	9/9/2019	12:54	Cocconeis placentula	Bacillariophyta	2	3.63E+04	9.58E+06	
SR3	1909090007-F	9/9/2019	12:54	Cocconeis sp.	Bacillariophyta	1	7.64E+04	2.02E+07	Fragment.
SR3			12:54	Cyclotella sp.	Bacillariophyta	2	1.53E+05	1.02E+08	- 750 (00000 100000)
SR3 SR3	1909090007-F 1909090007-F		12:54 12:54	Cymbella sp. cf. Diadesmis sp.	Bacillariophyta Bacillariophyta	1	1.82E+04 7.64E+04	5.30E+06 2.74E+07	Fragment.
SR3	1909090007-F		12:54	Diatoma vulgare	Bacillariophyta	1	7.64E+04	2.11E+08	
SR3	1909090007-F		12:54	Encyonema sp.	Bacillariophyta	2	1.53E+05	5.91E+07	
SR3	1909090007-F		12:54	Fragilaria spp.	Bacillariophyta	3	2.29E+05	3.02E+07	
SR3	1909090007-F		12:54	Gyrosigma sp.	Bacillariophyta	1	1.82E+04	2.76E+07	Fragment.
SR3 SR3	1909090007-F 1909090007-F		12:54 12:54	Melosira sp. Navicula spp.	Bacillariophyta Bacillariophyta	1 2	1.82E+04 1.53E+05	2.22E+08 2.30E+08	
SR3	1909090007-F		12:54	Nitzschia inconspicua	Bacillariophyta	4	7.26E+04	1.82E+06	
SR3	1909090007-F	9/9/2019	12:54	Nitzschia spp.	Bacillariophyta	3	2.29E+05	2.48E+07	
SR3	1909090007-F		12:54	Sellaphora pupula	Bacillariophyta	1	1.82E+04	1.74E+07	
SR3	1909090007-F		12:54	Staurosira sp.	Bacillariophyta	7	1.27E+05	9.58E+06	
SR3 SR3	1909090007-F 1909090007-F		12:54 12:54	Staurosirella leptostauron Surirella sp.	Bacillariophyta Bacillariophyta	2	7.64E+04 1.53E+05	5.04E+07 2.23E+08	
SR3	1909090007-F		12:54	Synedra ulna	Bacillariophyta	1	7.64E+04	2.97E+08	
SR3	1909090007-F	9/9/2019	12:54	cf. Thalassiosira sp.	Bacillariophyta	9	6.88E+05	2.59E+07	
SR3	1909090007-F		12:54	Chlamydomonas sp.	Chlorophyta	2	1.53E+05	1.20E+07	
SR3 SR3	1909090007-F 1909090007-F		12:54 12:54	Chlorella sp. Dictyosphaerium sp.	Chlorophyta Chlorophyta	70 16	5.35E+06 2.91E+05	2.24E+07 1.22E+07	
SR3	1909090007-F		12:54	Kirchneriella sp.	Chlorophyta	1	7.64E+04	8.00E+05	
SR3	1909090007-F	9/9/2019	12:54	Monoraphidium sp.	Chlorophyta	1	7.64E+04	1.76E+06	
SR3	1909090007-F		12:54	Scenedesmus sp.	Chlorophyta	6	1.09E+05	3.08E+06	
SR3 SR3	1909090007-F 1909090007-F		12:54 12:54	Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	2 26	3.63E+04 1.99E+06	5.06E+07 2.55E+08	
SR3	1909090007-F		12:54	Rhodomonas sp.	Cryptophyta	1	7.64E+04	6.76E+07	
SR3	1909090007-F	9/9/2019	12:54	Chroococcus microscopicus	Cyanobacteria	358	2.73E+07	7.33E+06	
SR3	1909090007-F	9/9/2019	12:54	cf. Peridinium sp.	Pyrrophyta	1	7.64E+04	6.27E+07	
				TOTAL		530	3.81E+07	2.09E+09	
SREM	1909090008-F	9/9/2019	13:42	Achnanthidium minutissimum	Bacillariophyta	1	1.82E+04	4.56E+05	
SREM	1909090008-F	9/9/2019	13:42	Amphora sp.	Bacillariophyta	4	3.56E+05	4.46E+07	
SREM	1909090008-F		13:42	Cocconeis placentula	Bacillariophyta	1	8.91E+04	5.04E+07	
SREM	1909090008-F	9/9/2019	13:42	Cyclotella sp.	Bacillariophyta	17	1.52E+06	3.05E+08	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
SREM	1909090008-F	DATE 9/9/2019	TIME 13:42	Encyonema sp.	Bacillariophyta	d,	8.91E+04	um ³ /L 2.75E+07	
SREM	1909090008-F		13:42	Fragilaria sp.	Bacillariophyta	1	8.91E+04	8.82E+06	
SREM	1909090008-F		13:42	Gomphonema sp.	Bacillariophyta	- Ú	1.82E+04	6.40E+06	
SREM	1909090008-F	9/9/2019	13:42	Melosira varians	Bacillariophyta	4	3.56E+05	1.07E+09	
SREM	1909090008-F		13:42	Navicula sp.	Bacillariophyta	1	1.82E+04	4.28E+06	
SREM	1909090008-F		13:42	Pseudostaurosira brevistriata	Bacillariophyta	25	2.23E+06	3.36E+08	
SREM	1909090008-F		13:42	Surirella sp.	Bacillariophyta	1	8.91E+04	6.01E+09	
SREM SREM	1909090008-F 1909090008-F		13:42 13:42	Synedra ulna	Bacillariophyta	1	8.91E+04 8.91E+04	4.04E+08 2.35E+05	
SREM	1909090008-F		13:42	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	22	1.96E+06	8.21E+06	
SREM	1909090008-F		13:42	Tetraedron minimum	Chlorophyta	1	8.91E+04	6.68E+06	
SREM	1909090008-F	9/9/2019	13:42	Cryptomonas sp.	Cryptophyta	1	8.91E+04	5.08E+07	
SREM	1909090008-F		13:42	Plagioselmis nannoplanctica	Cryptophyta	6	5.35E+05	6.86E+07	
SREM	1909090008-F		13:42	Chroococcus microscopicus	Cyanobacteria	508	4.53E+07	1.21E+07	
SREM	1909090008-F	9/9/2019	13:42	Pseudanabaena sp. TOTAL	Cyanobacteria	12 609	2.18E+05 5.32E+07	2.74E+06 8.42E+09	
				TOTAL		005	0.02L+07	0.422403	
NFM4	1909100073-B	9/10/2019	9:45	Achnanthidium sp.	Bacillariophyta	1	5.94E+04	2.52E+06	
NFM4	1909100073-B	9/10/2019	9:45	Aulacoseira sp.	Bacillariophyta	8	1.45E+05	5.75E+07	
NFM4	1909100073-B		9:45	Cocconeis placentula	Bacillariophyta	11	6.54E+05	4.31E+08	
NFM4	1909100073-B		9:45	Cyclotella sp.	Bacillariophyta	14	8.32E+05	7.06E+07	
NFM4 NFM4	1909100073-B 1909100073-B		9:45 9:45	Epithemia sorex Fragilaria sp.	Bacillariophyta Bacillariophyta	1 4	1.82E+04 2.38E+05	7.85E+06 9.74E+07	
NFM4	1909100073-B		9:45	Navicula spp.	Bacillariophyta	4	2.38E+05	1.83E+08	
NFM4	1909100073-B		9:45	Nitzschia sp.	Bacillariophyta	1	5.94E+04	2.32E+06	Fragment.
NFM4	1909100073-B	9/10/2019	9:45	Pseudostaurosira brevistriata	Bacillariophyta	10	5.94E+05	9.10E+07	
NFM4	1909100073-B		9:45	Reimeria sinuata	Bacillariophyta	1	1.82E+04	1.03E+06	
NFM4	1909100073-B		9:45	Rhoicosphenia curvata	Bacillariophyta	1	5.94E+04	1.85E+07	
NFM4 NFM4	1909100073-B 1909100073-B		9:45 9:45	Synedra sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	1	1.82E+04 5.94E+04	1.13E+07 1.63E+05	Fragment.
NFM4	1909100073-B		9:45	Chlorella sp.	Chlorophyta	26	1.54E+04	6.47E+06	
NFM4	1909100073-B		9:45	Monoraphidium sp.	Chlorophyta	1	1.82E+04	8.37E+05	
NFM4	1909100073-B		9:45	Scenedesmus sp.	Chlorophyta	8	4.75E+05	5.97E+06	
NFM4	1909100073-B		9:45	Plagioselmis nannoplanctica	Cryptophyta	17	1.01E+06	1.30E+08	
NFM4	1909100073-B		9:45	Chroococcus microscopicus	Cyanobacteria	444	2.64E+07	7.07E+06	
NFM4	1909100073-B	9/10/2019	9:45	Trachelomonas sp.	Euglenophyta	1	1.82E+04	1.27E+07	
				TOTAL		555	3.24E+07	1.14E+09	
SFM4	1909100077-F	9/10/2019	10:00	Cocconeis placentula	Bacillariophyta	5	3.96E+05	2.55E+08	
SFM4	1909100077-F		10:00	Cyclotella sp.	Bacillariophyta	1	3.63E+04	2.07E+07	
SFM4	1909100077-F		10:00	Melosira sp.	Bacillariophyta	2	1.58E+05	1.94E+09	
SFM4	1909100077-F		10:00	Nitzschia inconspicua	Bacillariophyta	2	1.58E+05	2.54E+06	
SFM4	1909100077-F		10:00	Nitzschia sp.	Bacillariophyta	1	3.63E+04	2.32E+06	
SFM4	1909100077-F 1909100077-F		10:00 10:00	cf. Thalassiosira sp.	Bacillariophyta	8 5	6.34E+05	2.39E+07 1.09E+06	
SFM4 SFM4	1909100077-F		10:00	Ankistrodesmus nannoselene Chlamydomonas sp.	Chlorophyta Chlorophyta	1	3.96E+05 3.63E+04	2.85E+06	
SFM4	1909100077-F		10:00	Chlorella spp.	Chlorophyta	67	5.31E+06	2.22E+07	
SFM4	1909100077-F		10:00	Plagioselmis nannoplanctica	Cryptophyta	22	1.74E+06	2.24E+08	
SFM4	1909100077-F	9/10/2019	10:00	Rhodomonas sp.	Cryptophyta	1	7.92E+04	4.27E+07	
SFM4	1909100077-F		10:00	cf. Aphanizomenon sp.	Cyanobacteria	31	1.13E+06	2.49E+07	
SFM4	1909100077-F	9/10/2019	10:00	Chroococcus microscopicus	Cyanobacteria	412	3.26E+07	8.75E+06	
				TOTAL		558	4.27E+07	2.57E+09	
NFM3	1909100072-F	9/10/2019	11:06	Achnanthidium sp.	Bacillariophyta	4	5.35E+05	1.51E+07	
NFM3	1909100072-F		11:06	Cocconeis placentula	Bacillariophyta	2	2.67E+05	1.32E+08	
NFM3	1909100072-F		11:06	Cyclotella sp.	Bacillariophyta	9	1.20E+06	2.42E+08	
NFM3	1909100072-F		11:06	Cymbella sp.	Bacillariophyta	1	3.63E+04	2.02E+07	
NFM3 NFM3	1909100072-F 1909100072-F		11:06 11:06	Diatoma vulgare	Bacillariophyta	2	7.26E+04 4.01E+05	9.13E+07 1.44E+08	
NFM3	1909100072-F		11:06	Encyonema sp. Epithemia sp.	Bacillariophyta Bacillariophyta	3	1.34E+05	2.03E+07	Fragment.
NFM3	1909100072-F		11:06	Nitzschia sp.	Bacillariophyta	8	1.07E+06	2.99E+07	r indgiment.
NFM3	1909100072-F	9/10/2019	11:06	Pseudostaurosira brevistriata	Bacillariophyta	24	3.21E+06	4.23E+08	
NFM3	1909100072-F		11:06	Rhoicosphenia curvata	Bacillariophyta	1	1.34E+05	2.22E+07	
NFM3	1909100072-F		11:06	Synedra sp.	Bacillariophyta	3	4.01E+05	1.23E+08	Fragment.
NFM3	1909100072-F		11:06	Ankistrodesmus nannoselene	Chlorophyta	5	6.68E+05	1.84E+06	
NFM3 NFM3	1909100072-F 1909100072-F		11:06 11:06	Chlorella sp. Scenedesmus sp.	Chlorophyta Chlorophyta	21 12	2.81E+06 1.60E+06	1.18E+07 5.29E+07	
NFM3	1909100072-F	9/10/2019	11:06	Cryptomonas sp.	Cryptophyta	1	3.63E+04	2.07E+07	
NFM3	1909100072-F		11:06	Plagioselmis nannoplanctica	Cryptophyta	4	5.35E+05	6.86E+07	
NFM3	1909100072-F		11:06	Chroococcus microscopicus	Cyanobacteria	448	5.99E+07	1.61E+07	
NFM3	1909100072-F	9/10/2019	11:06	Pseudanabaena sp.	Cyanobacteria	13	1.74E+06	2.18E+07	
				TOTAL		562	7.47E+07	1.46E+09	
GS3	1909100067-F	9/10/2019	11:12	Achnanthidium minutissimum	Bacillariophyta	1	3.63E+04	1.57E+06	
GS3	1909100067-F			Cocconeis placentula	Bacillariophyta	2	1.65E+05	4.96E+07	
GS3	1909100067-F			Cyclotella sp.	Bacillariophyta	2	7.26E+04	1.83E+07	
GS3	1909100067-F			Diatoma sp.	Bacillariophyta	1	8.23E+04	1.84E+07	
GS3	1909100067-F		11:12	Fragilaria sp.	Bacillariophyta	23	8.35E+05	1.26E+08	#10010-100101-11
GS3 GS3	1909100067-F 1909100067-F		11:12 11:12	Gyrosigma sp. Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1 5	3.63E+04 4.11E+05	2.65E+07 1.11E+07	Fragment.
GS3	1909100067-F			Nitzschia sp.	Bacillariophyta	о 1	4.11E+05 8.23E+04	5.18E+06	Fragment.
GS3	1909100067-F			Nitzschia spp.	Bacillariophyta	3	2.47E+05	1.78E+07	i raginone.
GS3	1909100067-F	9/10/2019	11:12	Rhoicosphenia curvata	Bacillariophyta	1	3.63E+04	3.48E+07	
GS3	1909100067-F		11:12	Synedraulna	Bacillariophyta	1	3.63E+04	9.70E+06	Fragment.
GS3	1909100067-F			Synedraulna	Bacillariophyta	1	3.63E+04	3.48E+08	
GS3 GS3	1909100067-F 1909100067-F			cf. Thalassiosira sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	8	6.58E+05 8.23E+04	2.48E+07 2.26E+05	
GS3 GS3	1909100067-F			Chlorella sp.	Chlorophyta	62	5.10E+06	2.26E+05 2.14E+07	
GS3	1909100067-F			Monoraphidium arcuatum	Chlorophyta	1	3.63E+04	1.90E+06	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
GS3	1909100067-F	DATE 9/10/2019	TIME 11:12	Plagioselmis nannoplanctica	Cryptophyta	17	1.40E+06	um ³ /L 1.79E+08	
GS3	1909100067-F	9/10/2019	11:12	Rhodomonas sp.	Cryptophyta	1	3.63E+04	3.21E+07	
GS3	1909100067-F	9/10/2019	11:12	Chroococcus microscopicus	Cyanobacteria	422	3.47E+07	9.31E+06	
				TOTAL		554	4.41E+07	9.36E+08	
SFM3	1909100076-F		11:45	Cocconeis placentula	Bacillariophyta	1	3.63E+04	2.77E+07	
SFM3	1909100076-F		11:45	Cyclotella sp.	Bacillariophyta	20	1.53E+06	1.76E+08	
SFM3 SFM3	1909100076-F 1909100076-F		11:45 11:45	Fragilaria sp. Gomphonema sp.	Bacillariophyta Bacillariophyta	1	3.63E+04 3.63E+04	5.31E+06 1.44E+07	
SFM3	1909100076-F		11:45	Nitzschia spp.	Bacillariophyta	4	3.06E+05	1.56E+07	
SFM3	1909100076-F		11:45	Reimeria sinuata	Bacillariophyta	1	7.64E+04	3.96E+06	
SFM3 SFM3	1909100076-F 1909100076-F		11:45 11:45	Rhopalodia sp. Staurosirella pinnata	Bacillariophyta Bacillariophyta	1 3	7.64E+04 2.29E+05	1.57E+07 2.88E+06	Fragment.
SFM3	1909100076-F		11:45	Synedra sp.	Bacillariophyta	2	7.26E+04	1.75E+07	Fragment.
SFM3	1909100076-F	9/10/2019	11:45	Ankistrodesmus nannoselene	Chlorophyta	3	2.29E+05	6.30E+05	
SFM3 SFM3	1909100076-F 1909100076-F		11:45 11:45	cf. Chlamydomonas sp. Chlorella sp.	Chlorophyta Chlorophyta	1 31	7.64E+04 2.37E+06	4.00E+07 9.92E+06	
SFM3	1909100076-F		11:45	Dictyosphaerium sp.	Chlorophyta	4	3.06E+05	4.32E+00	
SFM3	1909100076-F	9/10/2019	11:45	Monoraphidium sp.	Chlorophyta	1	7.64E+04	2.72E+06	
SFM3 SFM3	1909100076-F 1909100076-F		11:45 11:45	Scenedesmus sp.	Chlorophyta	8 8	6.11E+05 6.11E+05	6.40E+06 2.05E+07	
SFM3	1909100076-F		11:45	Tetrastrum sp. Cryptomonas sp.	Chlorophyta Cryptophyta	1	3.63E+04	3.70E+07	
SFM3	1909100076-F		11:45	Plagioselmis nannoplanctica	Cryptophyta	10	7.64E+05	9.80E+07	
SFM3	1909100076-F	9/10/2019	11:45	Chroococcus microscopicus	Cyanobacteria	448	3.42E+07	9.17E+06	
				TOTAL		549	4.17E+07	5.08E+08	
GS4	1909100068-F	9/10/2019	10:30	Achnanthidium minutissimum	Bacillariophyta	7	4.99E+05	2.12E+07	
GS4	1909100068-F		10:30	Cyclotella sp.	Bacillariophyta	4	2.85E+05	5.73E+07	
GS4 GS4	1909100068-F 1909100068-F		10:30 10:30	Encyonema sp. Epithemia sorex	Bacillariophyta Bacillariophyta	1 3	3.63E+04 2.14E+05	8.05E+06 7.84E+07	
GS4	1909100068-F		10:30	Gomphonema sp.	Bacillariophyta	4	2.85E+05	5.60E+07	
GS4	1909100068-F		10:30	Navicula spp.	Bacillariophyta	4	2.85E+05	6.05E+07	
GS4 GS4	1909100068-F 1909100068-F		10:30 10:30	Nitzschia spp. Pseudostaurosira sp.	Bacillariophyta Bacillariophyta	3 6	2.14E+05 4.28E+05	1.54E+07 4.84E+07	
GS4	1909100068-F		10:30	Synedra sp.	Bacillariophyta	1	3.63E+04	2.77E+07	Fragment.
GS4	1909100068-F		10:30	Ankistrodesmus nannoselene	Chlorophyta	10	7.13E+05	1.96E+06	504404C=0000000
GS4 GS4	1909100068-F 1909100068-F		10:30 10:30	Chlorella sp. Monoraphidium sp.	Chlorophyta Chlorophyta	19 1	1.35E+06 7.13E+04	5.67E+06 3.29E+06	
GS4	1909100068-F		10:30	Scenedesmus sp.	Chlorophyta	8	5.70E+05	5.97E+00	
GS4	1909100068-F	9/10/2019	10:30	Chrysococcus sp.	Chrysophyta	1	3.63E+04	2.38E+06	
GS4 GS4	1909100068-F 1909100068-F		10:30 10:30	Plagioselmis nannoplanctica	Cryptophyta	1 470	7.13E+04 3.35E+07	9.15E+06 8.98E+06	
GS4 GS4	1909100068-F		10:30	Chroococcus microscopicus cf. Planktothrix sp.	Cyanobacteria Cyanobacteria	51	3.64E+06	7.71E+07	
				TOTAL		594	4.22E+07	4.87E+08	
NFM2	1909100071-F	0/10/2010	12:05	Achnanthidium minutissimum	Bacillariophyta	5	4.86E+05	1.22E+07	
NFM2	1909100071-F		12:05	Amphora sp.	Bacillariophyta	1	3.63E+04	2.03E+06	
NFM2	1909100071-F		12:05	Cocconeis placentula	Bacillariophyta	7	6.81E+05	4.28E+08	
NFM2 NFM2	1909100071-F 1909100071-F		12:05 12:05	Cyclotella sp. Cymbella sp.	Bacillariophyta Bacillariophyta	9 1	8.75E+05 3.63E+04	7.42E+07 5.59E+07	
NFM2	1909100071-F		12:05	Diatoma sp.	Bacillariophyta	2	1.94E+05	4.81E+07	
NFM2	1909100071-F		12:05	Encyonema sp.	Bacillariophyta	4	3.89E+05	8.82E+07	
NFM2 NFM2	1909100071-F 1909100071-F	9/10/2019	12:05 12:05	Epithemia sp.	Bacillariophyta	1 5	3.63E+04 4.86E+05	1.63E+07 1.12E+08	
NFM2	1909100071-F		12:05	Fragilaria crotonensis Melosira sp.	Bacillariophyta Bacillariophyta	4	3.89E+05	1.32E+09	
NFM2	1909100071-F		12:05	Navicula spp.	Bacillariophyta	5	4.86E+05	9.62E+07	
NFM2 NFM2	1909100071-F 1909100071-F		12:05 12:05	Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1 4	9.72E+04 3.89E+05	1.17E+06	
NFM2	1909100071-F		12:05	Nitzschia spp. Planothidium sp.	Bacillariophyta Bacillariophyta	2	1.94E+05	1.01E+07 2.98E+07	
NFM2	1909100071-F	9/10/2019	12:05	Synedra sp.	Bacillariophyta	8	7.78E+05	1.47E+08	Fragment.
NFM2 NFM2	1909100071-F 1909100071-F		12:05 12:05	Ulnaria ulna	Bacillariophyta	1 4	9.72E+04 3.89E+05	3.59E+08 1.07E+06	
NFM2	1909100071-F		12:05	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	24	2.33E+06	9.77E+06	
NFM2	1909100071-F	9/10/2019	12:05	Monoraphidium sp.	Chlorophyta	1	3.63E+04	2.28E+06	
NFM2	1909100071-F 1909100071-F		12:05	Scenedesmus sp.	Chlorophyta	4	1.45E+05	8.90E+06	
NFM2 NFM2	1909100071-F		12:05 12:05	Plagioselmis nannoplanctica Chroococcus microscopicus	Cryptophyta Cyanobacteria	13 438	1.26E+06 4.26E+07	2.33E+08 1.14E+07	
				TOTAL		544	5.24E+07	3.07E+09	
GS2	1909100079-E	0/40/2040	11:52	Achnanthidium minutissimum	Bacillariophyta	3	1.28E+05	8.47E+06	Cannot meet tally in 50 fields.
GS2 GS2	1909100079-E 1909100079-E		11:52	Cocconeis placentula	Bacillariophyta	3	4.28E+05	2.88E+07	Cannot meet tally in 50 fields.
GS2	1909100079-E	9/10/2019	11:52	Cyclotella cf. meneghiniana	Bacillariophyta	1	4.28E+04	2.44E+07	Fragment. Cannot meet tally in 50 fields.
GS2 GS2	1909100079-E 1909100079-E		11:52 11:52	Navicula sp. Nitzschia acicularis	Bacillariophyta	1	4.28E+04 4.28E+04	1.37E+07 1.21E+07	Fragment. Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS2	1909100079-E		11:52	Nitzschia inconspicua	Bacillariophyta Bacillariophyta	3	4.28E+04 1.28E+05	2.89E+06	Cannot meet tally in 50 fields.
GS2	1909100079-E		11:52	Nitzschia sigma	Bacillariophyta	1	4.28E+04	8.16E+07	Cannot meet tally in 50 fields.
GS2 GS2	1909100079-E 1909100079-E		11:52	Nitzschia sp.	Bacillariophyta Bacillariophyta	3	1.28E+05	1.85E+07 6.55E+06	Fragment. Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS2 GS2	1909100079-E		11:52 11:52	Reimeria sinuata Synedra ulna	Bacillariophyta	1	4.28E+04 4.28E+04	6.92E+06	Cannot meet tally in 50 fields.
GS2	1909100079-E	9/10/2019	11:52	cf. Thalassiosira sp.	Bacillariophyta	9	3.85E+05	9.68E+06	Cannot meet tally in 50 fields.
GS2 GS2	1909100079-E 1909100079-E		11:52 11:52	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	3 21	1.28E+05 8.98E+05	3.53E+05 3.76E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS2	1909100079-E		11:52	Scenedesmus sp.	Chlorophyta	2	7.26E+04	9.13E+05	Cannot meet tally in 50 fields.
GS2	1909100079-E	9/10/2019	11:52	Plagioselmis nannoplanctica	Cryptophyta	6	2.57E+05	3.29E+07	Cannot meet tally in 50 fields.
GS2	1909100079-E	9/10/2019	11:52	Chroococcus microscopicus TOTAL	Cyanobacteria	174 231	7.44E+06 9.87E+06	2.00E+06 3.16E+08	Cannot meet tally in 50 fields.
				i sen dE		201	0.07ET00	3. IUETU6	
GS1	1909100065-F		12:48	Achnanthidium sp.	Bacillariophyta	4	4.28E+05	1.21E+07	
GS1	1909100065-F	ər 10/2019	12:48	Aulacoseira granulata var. angustissima	Bacillariophyta	6	2.18E+05	4.66E+07	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
GS1	1909100065-F	DATE 9/10/2019	TIME 12:48	Cocconeis placentula	Bacillariophyta	2	2.14E+05	um ³ /L 1.29E+08	
GS1	1909100065-F		12:48	Cyclotella sp.	Bacillariophyta	12	1.28E+06	7.56E+07	
GS1	1909100065-F		12:48	Cymbella sp.	Bacillariophyta	1	3.63E+04	1.80E+07	
GS1	1909100065-F		12:48 12:48	Gomphonema sp.	Bacillariophyta Bacillariophyta	3 4	3.21E+05	5.98E+07	
GS1 GS1	1909100065-F 1909100065-F		12:48	Navicula spp. Nitzschia sp.	Bacillariophyta Bacillariophyta	4	4.28E+05 1.07E+05	6.05E+07 8.34E+06	Fragment.
GS1	1909100065-F		12:48	Nitzschia sp.	Bacillariophyta	1	1.07E+05	5.78E+06	r ragmont.
GS1	1909100065-F	9/10/2019	12:48	Synedra sp.	Bacillariophyta	5	5.35E+05	1.29E+08	Fragment.
GS1	1909100065-F		12:48	Ankistrodesmus nannoselene	Chlorophyta	11	1.18E+06	3.23E+06	
GS1 GS1	1909100065-F 1909100065-F		12:48 12:48	cf. Chlorella sp.	Chlorophyta	15 1	1.60E+06 3.63E+04	6.72E+06 1.67E+06	
GS1	1909100065-F		12:48	Monoraphidium sp. Cryptomonas sp.	Chlorophyta Cryptophyta	1	3.63E+04	2.31E+06	
GS1	1909100065-F		12:48	Plagioselmis nannoplanctica	Cryptophyta	4	4.28E+05	6.81E+07	
GS1	1909100065-F	9/10/2019	12:48	Chroococcus microscopicus	Cyanobacteria	504	5.39E+07	1.45E+07	
				TOTAL		575	6.09E+07	6.61E+08	
GS2	1909100066-F	9/10/2019	11:52	Achnanthidium sp.	Bacillariophyta	4	3.29E+05	9.30E+06	
GS2	1909100066-F		11:52	Cocconeis placentula	Bacillariophyta	10	8.23E+05	4.39E+08	
GS2	1909100066-F	9/10/2019	11:52	Cyclotella sp.	Bacillariophyta	9	7.40E+05	6.28E+07	
GS2	1909100066-F		11:52	Epithemia sp.	Bacillariophyta	1	3.63E+04	2.88E+07	
GS2 GS2	1909100066-F 1909100066-F		11:52 11:52	Fragilaria crotonensis Navicula sp.	Bacillariophyta Bacillariophyta	8 1	2.91E+05 8.23E+04	1.14E+08 1.71E+07	
GS2	1909100066-F		11:52	Nitzschia spp.	Bacillariophyta	7	5.76E+05	3.63E+07	
GS2	1909100066-F	9/10/2019	11:52	Synedra sp.	Bacillariophyta	2	7.26E+04	1.33E+07	Fragment.
GS2	1909100066-F		11:52	Synedraulna	Bacillariophyta	4	3.29E+05	8.79E+08	
GS2 GS2	1909100066-F 1909100066-F		11:52 11:52	Tryblionella sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	1	8.23E+04 8.23E+04	6.46E+07 2.26E+05	
GS2 GS2	1909100066-F		11:52	Chlorella sp.	Chlorophyta	36	2.96E+06	1.24E+07	
GS2	1909100066-F		11:52	Tetraedron minimum	Chlorophyta	1	8.23E+04	8.88E+06	
GS2	1909100066-F		11:52	Cryptomonas sp.	Cryptophyta	1	8.23E+04	7.68E+07	
GS2	1909100066-F		11:52	Plagioselmis nannoplanctica	Cryptophyta	7	5.76E+05	7.39E+07	
GS2	1909100066-F	9/10/2019	11:52	Chroococcus microscopicus TOTAL	Cyanobacteria	452 545	3.72E+07 4.43E+07	9.97E+06 1.85E+09	
				TOTAL		040	4.450+07	1.03E+08	
SFM2	1909100075-F		13:00	Achnanthidium minutissimum	Bacillariophyta	4	1.71E+05	1.05E+07	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Aulacoseira sp.	Bacillariophyta	2	8.56E+04	1.40E+07	Cannot meet tally in 50 fields.
SFM2 SFM2	1909100075-F 1909100075-F		13:00	Cocconeis sp.	Bacillariophyta Bacillariophyta	2	7.26E+04	2.74E+07	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00 13:00	Cymbella sp. Fragilaria sp.	Bacillariophyta Bacillariophyta	4	3.63E+04 3.63E+04	1.51E+07 4.79E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Melosira sp.	Bacillariophyta	2	8.56E+04	4.64E+08	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Nitzschia sp.	Bacillariophyta	1	4.28E+04	2.70E+06	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Pinnularia sp.	Bacillariophyta	1	3.63E+04	6.02E+07	Fragment. Cannot meet tally in 50 fields.
SFM2 SFM2	1909100075-F 1909100075-F		13:00 13:00	Planothidium sp. Svnedra ulna	Bacillariophyta Bacillariophyta	1	4.28E+04 3.63E+04	8.06E+06 1.04E+08	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	cf. Thalassiosira spp.	Bacillariophyta	17	7.27E+05	3.47E+07	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Ankistrodesmus nannoselene	Chlorophyta	2	8.56E+04	2.35E+05	Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Chlorella spp.	Chlorophyta	33	1.41E+06	5.91E+06	Cannot meet tally in 50 fields.
SFM2 SFM2	1909100075-F 1909100075-F		13:00 13:00	Dictyosphaerium sp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	9 12	3.27E+05 5.13E+05	6.16E+06 6.59E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2	1909100075-F		13:00	Chroococcus microscopicus	Cyanobacteria	246	1.05E+07	2.82E+06	Cannot meet tally in 50 fields.
				TOTAL		335	1.42E+07	8.27E+08	
NEMA	1000100070 5	0/40/2040	10:00		Bernerenter		4.405.05	0.005.00	
NFM1 NFM1	1909100070-F 1909100070-F		13:06 13:06	Cocconeis placentula cf. Cyclotella sp.	Bacillariophyta Bacillariophyta	7	4.16E+05 2.38E+05	2.22E+08 1.40E+07	
NEM1	1909100070-F		13:06	Cyclotella sp.	Bacillariophyta	5	2.97E+05	1.17E+08	
NFM1	1909100070-F		13:06	Melosira varians	Bacillariophyta	2	7.26E+04	2.96E+08	
NFM1	1909100070-F		13:06	Navicula sp.	Bacillariophyta	1	5.94E+04	9.80E+06	Fragment.
NFM1 NFM1	1909100070-F 1909100070-F		13:06 13:06	Nitzschia sp. Nitzschia spp.	Bacillariophyta Bacillariophyta	1	5.94E+04 3.56E+05	3.92E+06 2.25E+07	Fragment. Fragment.
NEM1	1909100070-F		13:06	Staurosirella pinnata	Bacillariophyta	3	1.78E+05	4.20E+06	r tagment.
NFM1	1909100070-F		13:06	Synedra sp.	Bacillariophyta	7	4.16E+05	1.76E+08	Fragment.
NFM1	1909100070-F		13:06	Tryblionella sp.	Bacillariophyta	1	3.63E+04	3.23E+07	
NFM1 NFM1	1909100070-F 1909100070-F		13:06 13:06	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	3 21	1.78E+05 1.25E+06	4.90E+05 5.23E+06	
NEM1	1909100070-F		13:00	Monoraphidium sp.	Chlorophyta	1	5.94E+04	5.60E+05	
NFM1	1909100070-F		13:06	Tetrastrum sp.	Chlorophyta	4	1.45E+05	4.87E+06	
NFM1	1909100070-F		13:06	Chrysococcus sp.	Chrysophyta	1	3.63E+04	2.38E+06	
NFM1	1909100070-F 1909100070-F		13:06	Plagioselmis nannoplanctica	Cryptophyta	13	7.72E+05	1.23E+08 7.55E+06	
NFM1	1909100070-F	9/10/2019	13:06	Chroococcus microscopicus TOTAL	Cyanobacteria	474 554	2.82E+07 3.27E+07	1.04E+09	
				Correction and Correction of C		001	0.212.01	1.0 12 00	
SFM1	1909100074-F		14:18	Achnanthidium minutissimum	Bacillariophyta	1	1.07E+05	3.02E+06	
SFM1	1909100074-F 1909100074-F		14:18	Amphora sp.	Bacillariophyta	4	4.28E+05	3.25E+07	
SFM1 SFM1	1909100074-F		14:18 14:18	Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	1 12	3.63E+04 1.28E+06	3.23E+07 7.56E+07	
SFM1	1909100074-F		14:18	Gomphonema sp.	Bacillariophyta	4	4.28E+05	1.21E+08	
SFM1	1909100074-F	9/10/2019	14:18	Navicula sp.	Bacillariophyta	1	1.07E+05	3.18E+07	Fragment.
SEM1	1909100074-F 1909100074-F		14:18 14:18	Navicula sp.	Bacillariophyta Recilleriophyta	1 9	1.07E+05	8.40E+07	
SFM1 SFM1	1909100074-F 1909100074-F		14:18 14:18	Nitzschia spp. Reimeria sinuata	Bacillariophyta Bacillariophyta	9	9.63E+05 1.07E+05	3.12E+08 1.21E+07	
SFM1	1909100074-F		14:18	Rhoicosphenia curvata	Bacillariophyta	1	3.63E+04	7.86E+06	
SFM1	1909100074-F		14:18	Stephanodiscus sp.	Bacillariophyta	1	1.07E+05	3.03E+08	
SFM1 SFM1	1909100074-F 1909100074-F		14:18 14:18	Synedra sp.	Bacillariophyta Bacillariophyta	3	3.21E+05 4.28E+05	1.68E+08	Fragment.
SEM1	1909100074-F 1909100074-F		14:18 14:18	Synedra ulna Ankistrodesmus nannoselene	Chlorophyta	4	4.28E+05	1.18E+09 1.18E+06	
SFM1	1909100074-F		14:18	Chlorella sp.	Chlorophyta	16	1.71E+06	7.17E+06	
SFM1	1909100074-F		14:18	Scenedesmus sp.	Chlorophyta	12	4.36E+05	1.23E+07	
SEM1	1909100074-F		14:18	Plagioselmis nannoplanctica	Cryptophyta Cyanobacteria	7	7.49E+05	9.60E+07	
SFM1	1909100074-F	3/10/2019	14:18	Chroococcus microscopicus	cyanobacteria	532	5.69E+07	1.53E+07	

SITE	STATION	SAMPLE DATE	SAMPLE TIME	GENUS	DIVISION	TALLY	DENSITY (cells/L)	TOTAL BV um ³ /L	NOTES
		(Danie		TOTAL		614	6.47E+07	2.49E+09	
SREM SREM	1909100069-F 1909100069-F		14:14 14:14	Achnanthidium minutissimum Aulacoseira sp.	Bacillariophyta Bacillariophyta	6 3	3.77E+05 1.89E+05	1.96E+07 3.79E+07	
SREM	1909100069-F		14:14	Cocconeis placentula	Bacillariophyta	1	3.63E+04	1.10E+07	Fragment.
SREM	1909100069-F	9/10/2019	14:14	Cocconeis sp.	Bacillariophyta	1	3.63E+04	9.58E+06	
SREM	1909100069-F 1909100069-F	9/10/2019	14:14	Craticula sp.	Bacillariophyta	1	3.63E+04	3.99E+07	
SREM SREM	1909100069-F		14:14 14:14	Cyclotella sp. Diatoma vulgare	Bacillariophyta Bacillariophyta	2	6.29E+04 1.26E+05	1.58E+07 4.55E+08	
SREM	1909100069-F		14:14	Gyrosigma sp.	Bacillariophyta	1	3.63E+04	4.00E+07	Fragment.
SREM	1909100069-F		14:14	cf. Navicula sp.	Bacillariophyta	1	6.29E+04	8.30E+06	
SREM SREM	1909100069-F 1909100069-F		14:14 14:14	Nitzschia inconspicua Nitzschia sp.	Bacillariophyta Bacillariophyta	3	1.89E+05 3.63E+04	4.53E+06 2.67E+06	
SREM	1909100069-F		14:14	Pseudostaurosira brevistriata	Bacillariophyta Bacillariophyta	4	2.52E+05	4.98E+07	
SREM	1909100069-F		14:14	Sellaphora pupula	Bacillariophyta	1	6.29E+04	4.42E+07	
SREM	1909100069-F		14:14	Synedra ulna	Bacillariophyta	1	3.63E+04	1.25E+08	
SREM SREM	1909100069-F 1909100069-F		14:14 14:14	cf. Thalassiosira sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	10 7	6.29E+05 4.40E+05	3.71E+07 1.21E+06	
SREM	1909100069-F		14:14	cf. Chlamydomonas sp.	Chlorophyta	2	1.26E+05	2.53E+07	
SREM	1909100069-F		14:14	Chlorella spp.	Chlorophyta	40	2.52E+06	1.05E+07	
SREM SREM	1909100069-F 1909100069-F		14:14 14:14	Kirchneriella sp. Monoraphidium sp.	Chlorophyta	1	6.29E+04 3.63E+04	1.65E+06 5.96E+05	
SREM	1909100069-F		14:14	Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	8	5.03E+04	9.28E+05	
SREM	1909100069-F		14:14	Chroococcus microscopicus	Cyanobacteria	462	2.91E+07	7.79E+06	
				TOTAL		558	3.49E+07	1.04E+09	
MOKEM MOKEM	1909100078-F 1909100078-F		15:02 15:02	Achnanthidium minutissimum	Bacillariophyta Bacillariophyta	7 4	2.30E+05 1.32E+05	7.24E+06 4.19E+07	
MOKEM	1909100078-F		15:02	Aulacoseira alpigena Aulacoseira sp.	Bacillariophyta Bacillariophyta	21	6.91E+05	2.17E+08	
MOKEM	1909100078-F	9/10/2019	15:02	Cocconeis placentula	Bacillariophyta	7	2.30E+05	1.37E+08	
MOKEM	1909100078-F		15:02	Cyclotella sp.	Bacillariophyta	6	1.97E+05	1.16E+07	
	1909100078-F 1909100078-F		15:02 15:02	Cymbella spp. Encyonema sp.	Bacillariophyta Bacillariophyta	6 1	1.97E+05 7.26E+03	6.22E+07 7.41E+05	
	1909100078-F		15:02	Fragilaria sp.	Bacillariophyta	2	1.45E+04	4.52E+06	
MOKEM	1909100078-F	9/10/2019	15:02	Gomphonema sp.	Bacillariophyta	1	3.29E+04	4.39E+06	
MOKEM	1909100078-F 1909100078-F		15:02	Gyrosigma sp.	Bacillariophyta	1	7.26E+03	4.20E+07	
	1909100078-F		15:02 15:02	Melosira varians Navicula capitatoradiata	Bacillariophyta Bacillariophyta	4	1.32E+05 7.26E+03	4.48E+08 5.43E+06	
MOKEM	1909100078-F		15:02	Navicula sp.	Bacillariophyta	2	6.58E+04	2.09E+07	
MOKEM	1909100078-F		15:02	Nitzschia inconspicua	Bacillariophyta	4	1.32E+05	1.58E+06	
	1909100078-F 1909100078-F		15:02 15:02	Nitzschia sigma Pseudostaurosira brevistriata	Bacillariophyta Bacillariophyta	1 4	7.26E+03 2.91E+04	3.18E+06 3.56E+06	
	1909100078-F		15:02	Rhoicosphenia curvata	Bacillariophyta	1	7.26E+03	7.60E+05	
	1909100078-F		15:02	Staurosira construens	Bacillariophyta	2	1.45E+04	1.78E+06	
	1909100078-F		15:02	Stephanodiscus sp.	Bacillariophyta	1	3.29E+04	2.62E+07	Fragment.
	1909100078-F 1909100078-F		15:02 15:02	Synedra sp. Synedra ulna	Bacillariophyta Bacillariophyta	8	2.63E+05 1.45E+04	3.28E+08 1.11E+08	Fragment.
MOKEM			15:02	cf. Thalassiosira sp.	Bacillariophyta	1	3.29E+04	1.24E+06	
MOKEM	1909100078-F		15:02	Ankistrodesmus nannoselene	Chlorophyta	12	3.95E+05	1.09E+06	
MOKEM	1909100078-F 1909100078-F		15:02	Chlorella sp.	Chlorophyta	26	8.56E+05	3.58E+06	
MOKEM MOKEM			15:02 15:02	Monoraphidium sp. cf. Oocystis sp.	Chlorophyta Chlorophyta	5	1.65E+05 2.91E+04	6.20E+06 1.46E+06	
MOKEM	1909100078-F	9/10/2019	15:02	Tetrastrum sp.	Chlorophyta	4	2.91E+04	9.74E+05	
	1909100078-F		15:02	Plagioselmis sp.	Cryptophyta	10	3.29E+05	2.79E+07	
MOKEM	1909100078-F	9/10/2019	15:02	Chroococcus microscopicus TOTAL	Cyanobacteria	442 590	1.45E+07 1.88E+07	3.90E+06 1.53E+09	
SFM4	1909110071-F	9/11/2019	9:07	Aulacoseira sp.	Bacillariophyta	4	1.34E+05	4.20E+07	
SFM4	1909110071-F		9:07	Bacillaria paxillifer	Bacillariophyta	1	9.08E+03	1.06E+07	
SFM4	1909110071-F		9:07	Cocconeis placentula	Bacillariophyta	7	2.34E+05	1.54E+08	
SFM4 SFM4	1909110071-F 1909110071-F		9:07 9:07	Cyclotella sp. Encyonema sp.	Bacillariophyta Bacillariophyta	1	3.34E+04 9.08E+03	1.97E+06 1.70E+06	
SFM4	1909110071-F		9:07	Fragilaria spp.	Bacillariophyta	1	3.34E+04	7.03E+06	
SFM4	1909110071-F		9:07	Gomphonema sp.	Bacillariophyta	1	3.34E+04	3.16E+06	
SEM4	1909110071-F		9:07 9:07	Melosira varians	Bacillariophyta	2	1.82E+04	7.39E+07	
SFM4 SFM4	1909110071-F 1909110071-F		9:07	Navicula spp. Nitzschia inconspicua	Bacillariophyta Bacillariophyta	3 1	1.00E+05 3.34E+04	3.54E+07 4.01E+05	
SFM4	1909110071-F		9:07	Nitzschia spp.	Bacillariophyta	4	1.34E+05	6.02E+06	
SFM4	1909110071-F		9:07	Staurosira sp.	Bacillariophyta	2	1.82E+04	9.41E+05	-
SFM4 SFM4	1909110071-F 1909110071-F	9/11/2019	9:07 9:07	Stephanodiscus sp. Surirella sp.	Bacillariophyta Bacillariophyta	1	9.08E+03 3.34E+04	1.28E+07 7.17E+07	Fragment.
SFM4	1909110071-F		9:07	Synedra sp.	Bacillariophyta	6	2.01E+05	4.25E+07	Fragment.
SFM4	1909110071-F	9/11/2019	9:07	Ankistrodesmus nannoselene	Chlorophyta	21	7.02E+05	1.93E+06	5
SFM4	1909110071-F		9:07	Chlorella sp.	Chlorophyta	40	1.34E+06	5.60E+06	
SFM4 SFM4	1909110071-F 1909110071-F		9:07 9:07	Scenedesmus sp. Cryptomonas sp.	Chlorophyta Cryptophyta	8	2.67E+05 1.67E+05	2.80E+06 8.96E+07	
SFM4	1909110071-F		9:07	Plagioselmis sp.	Cryptophyta	13	4.34E+05	5.57E+07	
SFM4	1909110071-F	9/11/2019	9:07	Chroococcus microscopicus TOTAL	Cyanobacteria	378 501	1.26E+07 1.66E+07	3.39E+06 6.24E+08	
NFM4	1909110067-F	0/11/2010	9.05	Achnanthidium minutissimum	Dacillari cebut-	8	3.42E+05		
NEM4 NEM4	1909110067-F		9:05	Cocconeis sp.	Bacillariophyta Bacillariophyta	2	3.42E+05 8.56E+04	1.48E+07 2.58E+07	
NFM4	1909110067-F	9/11/2019	9:05	Cyclotella sp.	Bacillariophyta	2	8.56E+04	4.88E+07	Fragment.
NFM4	1909110067-F		9:05	cf. Navicula sp.	Bacillariophyta	2	8.56E+04	7.74E+07	
NFM4 NFM4	1909110067-F 1909110067-F	9/11/2019	9:05 9:05	Nitzschia inconspicua Nitzschia spp.	Bacillariophyta Bacillariophyta	2	8.56E+04 1.28E+05	1.71E+06 1.23E+07	
NFM4	1909110067-F		9:05	Planothidium sp.	Bacillariophyta	1	3.63E+04	1.16E+07	
NFM4	1909110067-F	9/11/2019	9:05	Synedra ulna	Bacillariophyta	2	7.26E+04	3.97E+07	Fragment.
NFM4	1909110067-F	9/11/2019	9:05	cf. Thalassiosira sp.	Bacillariophyta	24	1.03E+06	3.87E+07	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
NFM4	1909110067-F	DATE 9/11/2019	TIME 9:05	Ankistrodesmus nannoselene	Chlorophyta	2	8.56E+04	um ³ /L 2.35E+05	
NFM4	1909110067-F		9:05	Chlorella sp.	Chlorophyta	71	3.04E+06	1.27E+07	
NFM4	1909110067-F		9:05	Scenedesmus sp.	Chlorophyta	4	1.71E+05	1.79E+06	
NFM4	1909110067-F		9:05 9:05	Tetraedron caudatum	Chlorophyta	2	8.56E+04	6.42E+06	
NFM4 NFM4	1909110067-F 1909110067-F		9:05	Plagioselmis nannoplanctica Chroococcus microscopicus	Cryptophyta Cyanobacteria	24 584	1.03E+06 2.50E+07	1.32E+08 6.70E+06	
711 1017	10001100011	011112010	0.00	TOTAL	cydriod ddiorid	733	3.13E+07	4.30E+08	
GS4	1909110062-F		9:49	Achnanthidium sp.	Bacillariophyta	7	3.56E+05	8.96E+06	
GS4 GS4	1909110062-F 1909110062-F		9:49 9:49	Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	1 11	3.63E+04 5.60E+05	1.94E+07 3.30E+07	
GS4	1909110062-F		9:49	cf. Navicula sp.	Bacillariophyta	1	5.09E+04	1.01E+07	
GS4	1909110062-F		9:49	Nitzschia sp.	Bacillariophyta	1	3.63E+04	1.70E+07	
GS4	1909110062-F		9:49	Synedra ulna	Bacillariophyta	4	2.04E+05	1.14E+09	
GS4 GS4	1909110062-F 1909110062-F		9:49 9:49	Ankistrodesmus nannoselene	Chlorophyta	9 24	4.58E+05 1.22E+06	1.26E+06 5.12E+06	
GS4 GS4	1909110062-F		9:49	Chlorella sp. Plagioselmis sp.	Chlorophyta Cryptophyta	24 10	5.09E+05	4.32E+06	
GS4	1909110062-F		9:49	Chroococcus microscopicus	Cyanobacteria	476	2.42E+07	6.50E+06	
				TOTAL		544	2.77E+07	1.29E+09	
NFM3	1909110066-F		10:05	Achnanthidium sp.	Bacillariophyta	7	2.99E+05	1.81E+07	
NFM3	1909110066-F 1909110066-F		10:05	Cocconeis placentula	Bacillariophyta	2	8.56E+04	6.29E+07	
NFM3 NFM3	1909110066-F		10:05 10:05	Cyclotella sp. Encyonema sp.	Bacillariophyta Bacillariophyta	2	8.56E+04 3.63E+04	1.32E+07 1.07E+07	
NFM3	1909110066-F		10:05	Gomphoneis sp.	Bacillariophyta	4	3.63E+04	1.35E+08	Fragment.
NFM3	1909110066-F	9/11/2019	10:05	Gyrosigma sp.	Bacillariophyta	1	3.63E+04	1.61E+08	
NFM3	1909110066-F		10:05	Nitzschia inconspicua	Bacillariophyta	6	2.57E+05	5.13E+06	
NFM3 NFM3	1909110066-F 1909110066-F		10:05 10:05	Nitzschia spp. Synedra ulna	Bacillariophyta Bacillariophyta	11 10	4.71E+05 4.28E+05	1.98E+07 1.29E+08	Fragment.
NFM3	1909110066-F		10:05	cf. Thalassiosira sp.	Bacillariophyta	12	5.13E+05	3.02E+07	r taginent.
NFM3	1909110066-F		10:05	Actinastrum hantzschii	Chlorophyta	8	2.91E+05	2.42E+07	
NFM3	1909110066-F		10:05	Chlorella sp.	Chlorophyta	62	2.65E+06	1.11E+07	
NFM3 NFM3	1909110066-F 1909110066-F		10:05 10:05	Plagioselmis nannoplanctica	Cryptophyta	27 528	1.16E+06 2.26E+07	1.48E+08 6.06E+06	
NFM3	1909110066-F		10:05	Chroococcus microscopicus cf. Gymnodinium sp.	Cyanobacteria Pyrrophyta	1	3.63E+04	1.22E+07	
111 1110	10001100001	01102010	10.00	TOTAL	i jiropiija	679	2.90E+07	7.86E+08	
NFM3	1909110073-F	9/11/2019	10:05	Achnanthidium sp.	Bacillariophyta	5	4.86E+05	1.07E+07	
NFM3	1909110073-F		10:05	Cocconeis placentula	Bacillariophyta	10	9.72E+05	5.19E+08	
NFM3 NFM3	1909110073-F 1909110073-F		10:05 10:05	Cyclotella sp.	Bacillariophyta	18	1.75E+06	1.48E+08	
NFM3	1909110073-F		10:05	Cymbella sp. Diatoma sp.	Bacillariophyta Bacillariophyta	1	9.72E+04 9.72E+04	4.81E+07 1.56E+07	
NFM3	1909110073-F		10:05	Nitzschia dissipata	Bacillariophyta	1	3.63E+04	3.49E+06	
NFM3	1909110073-F		10:05	Nitzschia spp.	Bacillariophyta	7	6.81E+05	1.67E+08	
NFM3	1909110073-F		10:05	Pseudostaurosira brevistriata	Bacillariophyta	24	2.33E+06	3.08E+08	
NFM3 NFM3	1909110073-F 1909110073-F		10:05 10:05	Rhoicosphenia curvata Staurosirella pinnata	Bacillariophyta Bacillariophyta	4	3.89E+05 8.75E+05	5.37E+07 3.09E+07	
NFM3	1909110073-F		10:05	Synedra sp.	Bacillariophyta	4	3.89E+05	7.15E+07	Fragment.
NFM3	1909110073-F		10:05	cf. Thalassiosira sp.	Bacillariophyta	1	9.72E+04	1.50E+07	Ťi.
NFM3	1909110073-F		10:05	Tryblionella sp.	Bacillariophyta	1	3.63E+04	5.28E+07	
NFM3 NFM3	1909110073-F 1909110073-F		10:05 10:05	Chlorella sp. Monoraphidium sp.	Chlorophyta Chlorophyta	23 1	2.24E+06 9.72E+04	9.37E+06 6.31E+06	
NFM3	1909110073-F		10:05	Plagioselmis sp.	Cryptophyta	3	2.92E+05	3.74E+07	
NFM3	1909110073-F		10:05	Teleaulax sp.	Cryptophyta	1	3.63E+04	1.73E+07	
NFM3	1909110073-F		10:05	Chroococcus microscopicus	Cyanobacteria	406	3.95E+07	1.06E+07	
NFM3	1909110073-F	9/11/2019	10:05	Trachelomonas sp. TOTAL	Euglenophyta	1 521	3.63E+04 5.04E+07	1.69E+07 1.54E+09	
SFM3	1909110070-F		10:08	Achnanthidium sp.	Bacillariophyta	7	6.24E+05	1.76E+07	
SFM3 SFM3	1909110070-F 1909110070-F		10:08 10:08	Aulacoseira alpigena Cocconeis placentula	Bacillariophyta Bacillariophyta	6 2	5.35E+05 7.26E+04	1.34E+08 4.11E+07	
SFM3	1909110070-F		10:08	Cyclotella sp.	Bacillariophyta	9	8.02E+04	4.11E+07 4.72E+07	
SFM3	1909110070-F		10:08	Diatoma vulgare	Bacillariophyta	1	8.91E+04	1.50E+08	
SFM3	1909110070-F		10:08	Gomphonema sp.	Bacillariophyta	1	3.63E+04	5.70E+06	
SFM3 SFM3	1909110070-F 1909110070-F		10:08 10:08	Navicula sp. Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1	8.91E+04 1.78E+05	4.85E+07 2.14E+06	
SFM3	1909110070-F		10:08	Nitzschia sp.	Bacillariophyta Bacillariophyta	2	8.91E+04	6.68E+06	
SFM3	1909110070-F		10:08	Pseudostaurosira brevistriata	Bacillariophyta	18	1.60E+06	1.97E+08	
SFM3	1909110070-F		10:08	Rhoicosphenia curvata	Bacillariophyta	1	3.63E+04	4.23E+06	
SFM3 SFM3	1909110070-F 1909110070-F		10:08 10:08	Stauroneis sp. Staurosirella pinnata	Bacillariophyta Bacillariophyta	1 4	3.63E+04 3.56E+05	4.55E+08 1.26E+07	Fragment.
SFM3	1909110070-F		10:08	Synedra sp.	Bacillariophyta	3	2.67E+05	6.43E+07	Fragment.
SFM3	1909110070-F		10:08	Ankistrodesmus nannoselene	Chlorophyta	7	6.24E+05	1.71E+06	
SFM3	1909110070-F	9/11/2019	10:08	Chlorella sp.	Chlorophyta	38	3.39E+06	1.42E+07	
SFM3 SFM3	1909110070-F 1909110070-F		10:08 10:08	Cryptomonas sp.	Cryptophyta	1 10	8.91E+04 8.91E+05	9.80E+07 7.56E+07	
SFM3	1909110070-F		10:08	Plagioselmis sp. Chroococcus microscopicus	Cryptophyta Cyanobacteria	448	3.99E+07	1.07E+07	
			12,00	TOTAL	,	561	4.97E+07	1.39E+09	
GS2	1909110060-F		11:00	Achnanthidium sp.	Bacillariophyta Bacillariophyta	2	9.72E+04	4.12E+06	
GS2 GS2	1909110060-F 1909110060-F		11:00 11:00	Cyclotella sp. Encyonema sp.	Bacillariophyta Bacillariophyta	4	1.94E+05 4.86E+04	1.15E+07 1.43E+07	
GS2	1909110060-F		11:00	Nitzschia dissipata	Bacillariophyta	1	3.63E+04	5.88E+06	
GS2	1909110060-F	9/11/2019	11:00	Nitzschia inconspicua	Bacillariophyta	2	9.72E+04	1.17E+06	
GS2	1909110060-F		11:00	Nitzschia sp.	Bacillariophyta	1	4.86E+04	1.90E+06	Fragment.
GS2 GS2	1909110060-F 1909110060-F		11:00 11:00	Nitzschia spp. Pinnularia sp.	Bacillariophyta Bacillariophyta	3 1	1.46E+05 4.86E+04	1.05E+07 9.93E+07	
GS2	1909110060-F		11:00	Synedra sp.	Bacillariophyta	1	4.86E+04	8.93E+06	Fragment.
GS2	1909110060-F		11:00	Ankistrodesmus nannoselene	Chlorophyta	5	2.43E+05	6.68E+05	-

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
GS2 GS2	1909110060-F 1909110060-F	9/11/2019	11:00	Chlorella sp. Monoraphidium sp.	Chlorophyta Chlorophyta	67 3	3.26E+06 1.46E+05	um ³ /L 1.36E+07 4.89E+06	
GS2 GS2	1909110060-F 1909110060-F			Scenedesmus sp. Tetraedron minimum	Chlorophyta Chlorophyta	4 1	1.94E+05 3.63E+04	2.04E+06 2.72E+06	
GS2 GS2	1909110060-F 1909110060-F			Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	1 15	3.63E+04 7.29E+05	2.07E+07 9.35E+07	
GS2 GS2	1909110060-F 1909110060-F	9/11/2019	11:00 11:00	Teleaulax sp. Chroococcus microscopicus	Cryptophyta Cvanobacteria	1 408	3.63E+04 1.98E+07	1.73E+07 5.32E+06	
GS2	1909110060-F		11:00	cf. Limnothrix sp.	Cyanobacteria	17	8.26E+05	1.30E+07	
				TOTAL		538	2.61E+07	3.31E+08	
NFM2 NFM2	1909110065-F 1909110065-F	9/11/2019	11:14	Achnanthidium sp. Cyclotella sp.	Bacillariophyta Bacillariophyta	1 7	7.92E+04 5.55E+05	2.99E+06 3.27E+07	
NFM2 NFM2	1909110065-F 1909110065-F	9/11/2019	11:14 11:14	Diatoma sp. Gyrosigma sp.	Bacillariophyta Bacillariophyta	4 7	3.17E+05 5.55E+05	6.97E+07 3.10E+09	Fragment.
NFM2 NFM2	1909110065-F 1909110065-F		11:14 11:14	Nitzschia acicularis Nitzschia spp.	Bacillariophyta Bacillariophyta	1 5	7.92E+04 3.96E+05	5.39E+06 2.97E+07	
NFM2 NFM2	1909110065-F 1909110065-F		11:14 11:14	Pseudostaurosira brevistriata Synedra sp.	Bacillariophyta Bacillariophyta	8 24	6.34E+05 1.90E+06	8.36E+07 6.45E+08	Fragment.
NFM2	1909110065-F	9/11/2019	11:14	Ankistrodesmus nannoselene	Chlorophyta	4	3.17E+05	8.71E+05	ringinone.
NFM2 NFM2	1909110065-F 1909110065-F	9/11/2019	11:14	Chlorella sp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	1	2.46E+06 7.92E+04	1.03E+07 1.12E+07	
NFM2	1909110065-F	9/11/2019	11:14	Chroococcus microscopicus TOTAL	Cyanobacteria	492 585	3.90E+07 4.63E+07	1.04E+07 4.00E+09	
SFM2	1909110069-F			Amphora sp.	Bacillariophyta	4	1.71E+05	7.53E+06	Cannot meet tally in 50 fields.
SFM2 SFM2	1909110069-F 1909110069-F		11:18 11:18	Cyclotella sp. Navicula spp.	Bacillariophyta Bacillariophyta	10 4	4.28E+05 1.71E+05	2.52E+07 6.65E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2 SFM2	1909110069-F 1909110069-F		11:18 11:18	Nitzschia spp. Staurosirella pinnata	Bacillariophyta Bacillariophyta	6 1	2.57E+05 4.28E+04	3.39E+07 1.51E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2 SFM2	1909110069-F 1909110069-F	9/11/2019	11:18 11:18	Synedra sp. Synedra sp.	Bacillariophyta Bacillariophyta	1	4.28E+04 4.28E+04	2.86E+07 9.68E+06	Cannot meet tally in 50 fields. Fragment. Cannot meet tally in 50 fields.
SFM2	1909110069-F	9/11/2019	11:18	Chlorella sp.	Chlorophyta	42	1.80E+06	7.53E+06	Cannot meet tally in 50 fields.
SFM2 SFM2	1909110069-F 1909110069-F	9/11/2019	11:18 11:18	Crucigenia sp. Scenedesmus sp.	Chlorophyta Chlorophyta	4	1.45E+05 1.45E+05	6.54E+06 1.83E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2 SFM2	1909110069-F 1909110069-F		11:18 11:18	Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	1 16	3.63E+04 6.84E+05	2.07E+07 8.78E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
SFM2	1909110069-F	9/11/2019	11:18	Chroococcus microscopicus TOTAL	Cyanobacteria	264 358	1.13E+07 1.53E+07	3.03E+06 3.00E+08	Cannot meet tally in 50 fields.
GS3	1909110061-F			Achnanthidium sp.	Bacillariophyta	1	6.11E+04	2.40E+06	
GS3 GS3	1909110061-F 1909110061-F		10:24 10:24	Cymbella sp. Diatoma vulgare	Bacillariophyta Bacillariophyta	1 3	3.63E+04 1.83E+05	1.02E+07 2.30E+08	
GS3 GS3	1909110061-F 1909110061-F		10:24 10:24	cf. Navicula sp. Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1 1	6.11E+04 6.11E+04	2.69E+07 1.65E+06	
GS3 GS3	1909110061-F 1909110061-F	9/11/2019	10:24 10:24	Nitzschia spp. Staurosira sp.	Bacillariophyta Bacillariophyta	5	3.06E+05 2.18E+05	1.95E+07 1.64E+07	
GS3	1909110061-F	9/11/2019	10:24	Synedra ulna	Bacillariophyta	1	3.63E+04	1.09E+08	÷
GS3 GS3	1909110061-F 1909110061-F	9/11/2019	10:24 10:24	Synedra ulna cf. Thalassiosira sp.	Bacillariophyta Bacillariophyta	1 8	6.11E+04 4.89E+05	5.53E+07 1.84E+07	Fragment.
GS3 GS3	1909110061-F 1909110061-F	9/11/2019	10:24 10:24	Chlorella spp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	49 17	2.99E+06 1.04E+06	1.25E+07 1.33E+08	
GS3	1909110061-F	9/11/2019	10:24	Chroococcus microscopicus TOTAL	Cyanobacteria	462 556	2.82E+07 3.38E+07	7.57E+06 6.43E+08	
NFM1	1909110064-F			Achnanthidium sp.	Bacillariophyta	7	3.25E+05	1.53E+07	
NFM1 NFM1	1909110064-F 1909110064-F	9/11/2019		Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	13 10	6.04E+05 4.65E+05	3.04E+08 2.74E+07	
NFM1 NFM1	1909110064-F 1909110064-F			Encyonema sp. Fragilaria crotonensis	Bacillariophyta Bacillariophyta	1 6	4.65E+04 2.79E+05	1.46E+07 9.33E+07	
NFM1 NFM1	1909110064-F 1909110064-F	9/11/2019	12:12	Gomphonema sp. Navicula sp.	Bacillariophyta Bacillariophyta	1 1	3.63E+04 4.65E+04	3.62E+06 3.29E+06	
NFM1 NFM1	1909110064-F 1909110064-F	9/11/2019	12:12	Nitzschia inconspicua Nitzschia sp.	Bacillariophyta Bacillariophyta	1 5	4.65E+04 2.32E+05	9.76E+05 1.53E+07	
NFM1	1909110064-F	9/11/2019	12:12	Pseudostaurosira brevistriata	Bacillariophyta	3	1.09E+05	1.67E+07	
NFM1 NFM1	1909110064-F 1909110064-F	9/11/2019	12:12 12:12	Reimeria sinuata Rhoicosphenia curvata	Bacillariophyta Bacillariophyta	1	4.65E+04 3.63E+04	2.41E+06 4.90E+06	
NFM1 NFM1	1909110064-F 1909110064-F		12:12 12:12	Synedra sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	4 10	1.86E+05 4.65E+05	4.21E+07 1.28E+06	Fragment.
NFM1 NFM1	1909110064-F 1909110064-F		12:12 12:12	Chlorella sp. Scenedesmus sp.	Chlorophyta Chlorophyta	38 10	1.77E+06 4.65E+05	7.40E+06 4.87E+06	
NFM1 NFM1	1909110064-F 1909110064-F	9/11/2019	12:12	Cryptomonas sp. Teleaulax sp.	Cryptophyta	4	1.86E+05 4.65E+04	1.42E+08 2.36E+07	
NFM1	1909110064-F			Chroococcus microscopicus	Cryptophyta Cyanobacteria	420	1.95E+07	5.24E+06	
GS1	1000110050 5	0/11/2010	11:35	TOTAL	Bacillariophyta	537	2.49E+07 1.69E+05	7.28E+08	
GS1	1909110059-F 1909110059-F	9/11/2019	11:35	Achnanthidium minutissimum Cocconeis placentula	Bacillariophyta	3	7.26E+04	1.27E+07 2.91E+07	
GS1 GS1	1909110059-F 1909110059-F	9/11/2019	11:35	Cyclotella sp. Epithemia sorex	Bacillariophyta Bacillariophyta	2 1	1.13E+05 3.63E+04	6.42E+07 2.96E+07	
GS1 GS1	1909110059-F 1909110059-F			Nitzschia inconspicua Nitzschia spp.	Bacillariophyta Bacillariophyta	2 3	1.13E+05 1.69E+05	1.80E+06 8.36E+06	
GS1 GS1	1909110059-F 1909110059-F	9/11/2019	11:35	Reimeria sinuata cf. Thalassiosira sp.	Bacillariophyta Bacillariophyta	1 6	5.63E+04 3.38E+05	4.02E+06 1.27E+07	
GS1 GS1	1909110059-F 1909110059-F	9/11/2019	11:35	Chlamydomonas sp. Chlorella spp.	Chlorophyta Chlorophyta	1 58	3.63E+04 3.26E+06	2.85E+06 1.37E+07	
GS1	1909110059-F	9/11/2019	11:35	Tetraedron minimum	Chlorophyta	1	5.63E+04	4.22E+06	
GS1 GS1	1909110059-F 1909110059-F			Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	1 21	3.63E+04 1.18E+06	5.06E+07 1.52E+08	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
GS1	1909110059-F	DATE 9/11/2019	TIME 11:35	Chroococcus microscopicus	Cyanobacteria	430	2.42E+07	um ³ /L 6.49E+06	
GS1	1909110059-F	9/11/2019	11:35	Peridinium sp.	Pyrrophyta	1	5.63E+04	5.28E+07	
				TOTAL		533	2.99E+07	4.45E+08	
SFM1	1909110068-F		12:13	Achnanthidium sp.	Bacillariophyta	5	3.82E+05	1.44E+07	
SFM1 SFM1	1909110068-F 1909110068-F		12:13 12:13	Aulacoseira sp. Cocconeis placentula	Bacillariophyta Bacillariophyta	8 3	6.11E+05 2.29E+05	1.92E+08 1.15E+08	
SFM1	1909110068-F		12:13	Cyclotella sp.	Bacillariophyta	13	9.93E+05	5.85E+07	
SFM1	1909110068-F		12:13	Cymbella sp.	Bacillariophyta	1	7.64E+04	1.07E+08	
SFM1 SFM1	1909110068-F 1909110068-F		12:13 12:13	Diatoma sp.	Bacillariophyta	1 1	7.64E+04 3.63E+04	1.26E+07 7.56E+06	Fragment.
SFM1	1909110068-F		12:13	Gomphonema sp. Gyrosigma sp.	Bacillariophyta Bacillariophyta	2	1.53E+05	4.49E+08	
SFM1	1909110068-F	9/11/2019	12:13	Navicula sp.	Bacillariophyta	1	7.64E+04	1.98E+07	
SFM1 SFM1	1909110068-F 1909110068-F		12:13 12:13	Nitzschia palea Nitzschia sp.	Bacillariophyta Bacillariophyta	1	7.64E+04 7.64E+04	7.33E+06 4.13E+06	
SFM1	1909110068-F		12:13	Rhoicosphenia curvata	Bacillariophyta	1	3.63E+04	3.98E+06	
SFM1	1909110068-F		12:13	Synedra sp.	Bacillariophyta	10	7.64E+05	1.89E+08	Fragment.
SFM1 SFM1	1909110068-F 1909110068-F		12:13 12:13	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	9 52	6.88E+05 3.97E+06	1.89E+06 1.66E+07	
SFM1	1909110068-F		12:13	Crucigenia tetrapedia	Chlorophyta	4	1.45E+05	1.09E+07	
SFM1	1909110068-F		12:13	Monoraphidium sp.	Chlorophyta	2	1.53E+05	6.72E+06	
SFM1 SFM1	1909110068-F 1909110068-F		12:13 12:13	Scenedesmus sp. Cryptomonas sp.	Chlorophyta Cryptophyta	4	1.45E+05 7.64E+04	1.52E+06 4.35E+07	
SFM1	1909110068-F		12:13	Plagioselmis nannoplanctica	Cryptophyta	24	1.83E+06	2.35E+08	
SFM1	1909110068-F		12:13	Chroococcus microscopicus	Cyanobacteria	356	2.72E+07	7.29E+06	
SFM1	1909110068-F	9/11/2019	12:13	Merismopedia tenuissima TOTAL	Cyanobacteria	16 516	1.22E+06 3.90E+07	1.22E+06 1.50E+09	
				10 TML		010	0.002.001	1.002.00	
MOKEM MOKEM	1909110072-F 1909110072-F		12:58 12:58	Amphora sp. Aulacoseira granulata var. angustissima	Bacillariophyta Bacillariophyta	1 9	9.72E+04 8.75E+05	1.22E+07 9.90E+07	
MOKEM	1909110072-F		12:58	Cocconeis placentula	Bacillariophyta	4	3.89E+05	2.47E+08	
	1909110072-F	9/11/2019	12:58	Cyclotella sp.	Bacillariophyta	12	1.17E+06	1.80E+08	
	1909110072-F 1909110072-F		12:58 12:58	Melosira varians Navicula sp.	Bacillariophyta Bacillariophyta	4 1	3.89E+05 9.72E+04	2.08E+09 2.29E+07	
	1909110072-F		12:58	Nitzschia inconspicua	Bacillariophyta	1	9.72E+04	1.36E+06	
	1909110072-F		12:58	Nitzschia spp.	Bacillariophyta	3	2.92E+05	1.49E+07	
	1909110072-F 1909110072-F		12:58 12:58	Planothidium sp. Pseudostaurosira brevistriata	Bacillariophyta Bacillariophyta	1 5	3.63E+04 1.82E+05	5.56E+06 2.22E+07	
	1909110072-F		12:58	Staurosirella pinnata	Bacillariophyta	1	3.63E+04	1.28E+06	
MOKEM			12:58	Tryblionella sp.	Bacillariophyta	1	9.72E+04	5.88E+07	
MOKEM	1909110072-F 1909110072-F	9/11/2019	12:58 12:58	Ankistrodesmus nannoselene Chlorella sp.	Chlorophyta Chlorophyta	3 38	2.92E+05 3.69E+06	8.02E+05 1.55E+07	
MOKEM	1909110072-F	9/11/2019	12:58	Monoraphidium sp.	Chlorophyta	1	3.63E+04	1.83E+06	
	1909110072-F		12:58	Scenedesmus sp.	Chlorophyta	4	1.45E+05	2.13E+06	
	1909110072-F 1909110072-F		12:58 12:58	Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	1 22	9.72E+04 2.14E+06	5.21E+07 2.74E+08	
	1909110072-F		12:58	Chroococcus microscopicus	Cyanobacteria	476	4.63E+07	1.24E+07	
				TOTAL		588	5.64E+07	3.10E+09	
SREM	1909110063-F	9/11/2019	12:44	Achnanthidium minutissimum	Bacillariophyta	2	8.56E+04	3.36E+06	
SREM	1909110063-F	9/11/2019	12:44	Aulacoseira granulata var. angustissima	Bacillariophyta	9	3.85E+05	1.12E+08	
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	Cocconeis placentula Craticula sp.	Bacillariophyta Bacillariophyta	5 1	2.14E+05 7.26E+03	1.05E+08 2.85E+06	
SREM	1909110063-F		12:44	Cyclotella sp.	Bacillariophyta	11	4.71E+05	1.18E+08	
SREM	1909110063-F	9/11/2019	12:44	Cymbella sp.	Bacillariophyta	2	1.45E+04	1.90E+07	
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	Encyonema minutum Fragilaria crotonensis	Bacillariophyta Bacillariophyta	2 14	8.56E+04 5.99E+05	1.10E+07 4.68E+08	
SREM	1909110063-F		12:44	Melosira sp.	Bacillariophyta	3	2.18E+04	2.66E+08	
SREM	1909110063-F		12:44	Navicula sp.	Bacillariophyta	1	7.26E+03	2.17E+06	
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	Nitzschia spp. Planothidium sp.	Bacillariophyta Bacillariophyta	9 1	3.85E+05 4.28E+04	1.85E+07 7.41E+06	Fragment.
SREM	1909110063-F		12:44	Rhoicosphenia curvata	Bacillariophyta	1	4.28E+04	9.22E+06	
SREM	1909110063-F		12:44	Sellaphora pupula	Bacillariophyta	1	4.28E+04	3.23E+07	
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	Staurosira sp. Synedra ulna	Bacillariophyta Bacillariophyta	8 1	3.42E+05 4.28E+04	1.61E+07 1.16E+08	
SREM	1909110063-F	9/11/2019	12:44	Synedraulna	Bacillariophyta	1	4.28E+04	2.34E+07	Fragment.
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	cf. Thalassiosira sp. Ankistrodesmus nannoselene	Bacillariophyta Chlorophyta	12 1	5.13E+05 4.28E+04	3.02E+07 1.18E+05	
SREM	1909110063-F		12:44	Chlamydomonas sp.	Chlorophyta	4	1.71E+05	1.34E+07	
SREM	1909110063-F	9/11/2019	12:44	Chlorella spp.	Chlorophyta	55	2.35E+06	9.86E+06	
SREM	1909110063-F 1909110063-F		12:44 12:44	Closteriopsis cf. acicularis Kirchneriella sp.	Chlorophyta Chlorophyta	1	7.26E+03 7.26E+03	9.06E+06 1.71E+05	
SREM	1909110063-F		12:44	Monoraphidium sp.	Chlorophyta	1	7.26E+03	3.80E+05	
SREM	1909110063-F	9/11/2019	12:44	Cryptomonas sp.	Cryptophyta	1	7.26E+03	1.15E+07	
SREM SREM	1909110063-F 1909110063-F		12:44 12:44	Plagioselmis nannoplanctica Chroococcus microscopicus	Cryptophyta Cyanobacteria	17 308	7.27E+05 1.32E+07	9.33E+07 3.53E+06	
SREM	1909110063-F		12:44	Peridinium sp.	Pyrrophyta	2	1.45E+04	4.51E+07	
				TOTAL		475	1.99E+07	1.55E+09	
NFM4	1909120040-F	9/12/2019	9:10	Achnanthidium minutissimum	Bacillariophyta	7	6.81E+05	2.14E+07	
NFM4	1909120040-F	9/12/2019	9:10	Amphora sp.	Bacillariophyta	2	1.94E+05	1.71E+07	
NFM4 NFM4	1909120040-F 1909120040-F		9:10 9:10	Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	1 16	3.63E+04 1.56E+06	2.57E+07 9.16E+07	
	1909120040-F	9/12/2019	9:10	Diatoma sp.	Bacillariophyta	2	1.94E+05	2.75E+07	Fragment.
NFM4	1909120040-F		9:10	Navicula sp.	Bacillariophyta	1	9.72E+04	3.44E+07	Fragment.
NFM4 NFM4	1909120040-F 1909120040-F		9:10 9:10	Nitzschia dissipata Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1 4	9.72E+04 3.89E+05	1.58E+07 4.67E+06	
NFM4	1909120040-F	9/12/2019	9:10	Planothidium sp.	Bacillariophyta	3	2.92E+05	5.50E+07	
NFM4	1909120040-F	9/12/2019	9:10	Stephanodiscus sp.	Bacillariophyta	5	4.86E+05	3.74E+08	Fragment.

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
NFM4	1909120040-F	DATE 9/12/2019	TIME 9:10	Synedra sp.	Bacillariophyta	7	6.81E+05	um ³ /L 1.73E+08	Fragment.
NFM4	1909120040-F		9:10	Synedra ulna	Bacillariophyta	4	3.89E+05	9.35E+08	1.1.2
NFM4	1909120040-F		9:10	Ankistrodesmus nannoselene	Chlorophyta	10	9.72E+05	2.67E+06	
NFM4 NFM4	1909120040-F 1909120040-F		9:10 9:10	Chlorella sp. Cryptomonas sp.	Chlorophyta Cryptophyta	45 3	4.38E+06 2.92E+05	1.83E+07 1.95E+08	
NEM4	1909120040-F		9:10	Plagioselmis nannoplanctica	Cryptophyta	9	8.75E+05	1.76E+08	
NFM4	1909120040-F	9/12/2019	9:10	Chroococcus microscopicus	Cyanobacteria	388	3.77E+07	1.01E+07	
				TOTAL		508	4.93E+07	2.18E+09	
SFM4	1909120044-F	9/12/2019	10:03	Aulacoseira sp.	Bacillariophyta	6	1.89E+05	5.93E+07	
SFM4	1909120044-F		10:03	Cocconeis placentula	Bacillariophyta	1	3.15E+04	1.28E+07	Fragment.
SFM4 SFM4	1909120044-F 1909120044-F		10:03 10:03	Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	8 16	2.52E+05 5.03E+05	1.92E+08 2.96E+07	
SFM4	1909120044-F		10:03	Fragilaria sp.	Bacillariophyta	14	4.40E+05	9.96E+07	
SFM4	1909120044-F		10:03	Gomphonema sp.	Bacillariophyta	1	9.08E+03	1.73E+06	
SFM4 SFM4	1909120044-F		10:03 10:03	Navicula sp.	Bacillariophyta	1	3.15E+04	8.89E+06 4.17E+07	
SFM4	1909120044-F 1909120044-F		10:03	Nitzschia spp. Svnedra sp.	Bacillariophyta Bacillariophyta	13 3	4.09E+05 9.44E+04	4.17E+07 7.20E+07	Fragment.
SFM4	1909120044-F	9/12/2019	10:03	Tryblionella sp.	Bacillariophyta	1	3.15E+04	3.46E+07	
SFM4	1909120044-F		10:03	Ankistrodesmus nannoselene	Chlorophyta	5	1.57E+05	4.32E+05	
SFM4 SFM4	1909120044-F 1909120044-F		10:03 10:03	Chlorella sp. Monoraphidium sp.	Chlorophyta Chlorophyta	46 3	1.45E+06 9.44E+04	6.06E+06 4.74E+06	
SFM4	1909120044-F		10:03	Scenedesmus sp.	Chlorophyta	8	2.52E+05	3.16E+06	
SFM4	1909120044-F		10:03	Chrysococcus sp.	Chrysophyta	1	3.15E+04	2.06E+06	
SEM4 SEM4	1909120044-F 1909120044-F		10:03 10:03	Cryptomonas sp. Plagioselmis nannoplanctica	Cryptophyta Cryptophyta	1 13	9.08E+03 4.09E+05	6.93E+06 5.25E+07	
SFM4	1909120044-F		10:03	Chroococcus microscopicus	Cyanobacteria	368	1.16E+07	3.10E+06	
				TOTAL		509	1.60E+07	6.31E+08	
GS4	1909120035-F	0(10)0010	9:30	Achnanthidium minutissimum	Resilleriesbute	4	3.63E+04	1.26E+06	Connot most tolly in 50 fields
GS4	1909120035-F		9:30	Cocconeis sp.	Bacillariophyta Bacillariophyta	1	3.63E+04	1.51E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS4	1909120035-F	9/12/2019	9:30	Cyclotella sp.	Bacillariophyta	1	4.28E+04	1.08E+07	Cannot meet tally in 50 fields.
GS4	1909120035-F		9:30	Encyonema minutum	Bacillariophyta	1	4.28E+04	3.14E+06	Cannot meet tally in 50 fields.
GS4 GS4	1909120035-F 1909120035-F		9:30 9:30	Navicula sp. Nitzschia sp.	Bacillariophyta Bacillariophyta	1	3.63E+04 4.28E+04	2.74E+07 6.93E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS4	1909120035-F	9/12/2019	9:30	cf. Thalassiosira sp.	Bacillariophyta	4	1.71E+05	1.01E+07	Cannot meet tally in 50 fields.
GS4	1909120035-F		9:30	Chlorella sp.	Chlorophyta	25	1.07E+06	4.48E+06	Cannot meet tally in 50 fields.
GS4 GS4	1909120035-F 1909120035-F		9:30 9:30	cf. Scenedesmus sp. Cryptomonas sp.	Chlorophyta Cryptophyta	1	4.28E+04 3.63E+04	1.01E+06 3.61E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS4	1909120035-F		9:30	Plagioselmis nannoplanctica	Cryptophyta	4	1.71E+05	2.20E+07	Cannot meet tally in 50 fields.
GS4	1909120035-F		9:30	Chroococcus microscopicus	Cyanobacteria	62	2.65E+06	7.11E+05	Cannot meet tally in 50 fields.
GS4	1909120035-F	9/12/2019	9:30	Gymnodinium sp. TOTAL	Pyrrophyta	1 104	4.28E+04 4.42E+06	6.70E+07 2.06E+08	Cannot meet tally in 50 fields.
				LOGHLE.		too t			
SFM4	1909120046-D		10:03	Achnanthidium minutissimum	Bacillariophyta	4	1.10E+05	3.10E+06	
SFM4 SFM4	1909120046-D 1909120046-D		10:03 10:03	Aulacoseira sp. Cocconeis placentula	Bacillariophyta Bacillariophyta	9	2.47E+05 2.19E+05	1.74E+08 1.24E+08	
SFM4	1909120046-D		10:03	Cyclotella sp.	Bacillariophyta	11	3.02E+05	1.78E+07	
SFM4	1909120046-D		10:03	Epithemia sp.	Bacillariophyta	1	1.21E+04	2.97E+06	
SFM4 SFM4	1909120046-D 1909120046-D		10:03 10:03	Gyrosigma sp. Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1	2.74E+04 2.74E+04	5.83E+07 8.23E+05	
SFM4	1909120046-D		10:03	Nitzschia spp.	Bacillariophyta	6	1.65E+05	1.18E+07	
SFM4	1909120046-D		10:03	Pinnularia sp.	Bacillariophyta	1	2.74E+04	4.52E+06	Fragment.
SFM4 SFM4	1909120046-D 1909120046-D		10:03 10:03	Planothidium sp. Synedra sp.	Bacillariophyta Bacillariophyta	3 9	8.23E+04 2.47E+05	1.16E+07 4.88E+07	Fragment.
SFM4	1909120046-D		10:03	Synedra ulna	Bacillariophyta	2	5.48E+04	1.05E+08	Tragmone.
SFM4	1909120046-D		10:03	Ankistrodesmus nannoselene	Chlorophyta	17	4.66E+05	1.28E+06	
SFM4 SFM4	1909120046-D 1909120046-D		10:03 10:03	Chlorella sp. Monoraphidium sp.	Chlorophyta Chlorophyta	46 1	1.26E+06 1.21E+04	5.28E+06 8.62E+05	
SFM4	1909120046-D		10:03	Scenedesmus sp.	Chlorophyta	6	1.65E+05	2.07E+06	
SFM4	1909120046-D	9/12/2019	10:03	Plagioselmis nannoplanctica	Cryptophyta	26	7.13E+05	1.13E+08	
SFM4	1909120046-D	9/12/2019	10:03	Chroococcus microscopicus TOTAL	Cyanobacteria	344 496	9.43E+06 1.36E+07	2.53E+06 6.88E+08	
				10 ML		400	1.SOE TO	0.002.00	
SR1	1909090005-F		11:20	cf. Achnanthes sp.	Bacillariophyta	1	1.82E+04	5.82E+06	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Achnanthidium minutissimum cf. Amphora sp.	Bacillariophyta Bacillariophyta	1	6.68E+04 6.68E+04	5.88E+06 6.68E+06	
SR1	1909090005-F		11:20	Cocconeis sp.	Bacillariophyta	1	6.68E+04	6.93E+06	
SR1	1909090005-F		11:20	Cymbella spp.	Bacillariophyta	4	7.26E+04	1.86E+07	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Diatoma sp. Fragilaria cf. capucina	Bacillariophyta Bacillariophyta	1 77	6.68E+04 1.40E+06	5.20E+07 7.73E+08	
SR1	1909090005-F		11:20	Fragilaria sp.	Bacillariophyta	1	6.68E+04	1.55E+07	
SR1	1909090005-F		11:20	Fragilaria vaucheriae	Bacillariophyta	2	3.63E+04	8.13E+06	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Gomphonema sp. Melosira sp.	Bacillariophyta Bacillariophyta	1	6.68E+04 7.26E+04	2.45E+07 3.07E+08	
SR1	1909090005-F		11:20	Navicula sp.	Bacillariophyta	1	1.82E+04	2.98E+07	
SR1	1909090005-F	9/9/2019	11:20	Nitzschia inconspicua	Bacillariophyta	1	6.68E+04	1.67E+06	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Nitzschia palea Nitzschia sp	Bacillariophyta Bacillariophyta	1	6.68E+04 6.68E+04	1.60E+07 5.08E+06	
SR1	1909090005-F		11:20	Nitzschia sp. Pseudostaurosira sp.	Bacillariophyta Bacillariophyta	1	6.68E+04	1.02E+06	
SR1	1909090005-F	9/9/2019	11:20	Rhoicosphenia curvata	Bacillariophyta	1	6.68E+04	8.65E+06	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Synedra sp. Synedra ulna	Bacillariophyta Bacillariophyta	1 4	6.68E+04 2.67E+05	1.68E+07 1.09E+09	Fragment.
SR1	1909090005-F	9/9/2019	11:20	cf. Thalassiosira sp.	Bacillariophyta	2	1.34E+05	1.51E+09	
SR1	1909090005-F	9/9/2019	11:20	Chlorella sp.	Chlorophyta	18	1.20E+06	5.04E+06	
SR1 SR1	1909090005-F 1909090005-F		11:20 11:20	Elakatothrix sp. Monoraphidium sp.	Chlorophyta Chlorophyta	2	3.63E+04 1.82E+04	7.99E+05 1.22E+06	
SR1	1909090005-F	9/9/2019	11:20	Dinobryon sp.	Chrysophyta	10	1.82E+04	5.48E+07	
SR1	1909090005-F	9/9/2019	11:20	Plagioselmis sp.	Cryptophyta	1	6.68E+04	2.80E+07	

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
SR1	1909090005-F	DATE 9/9/2019	TIME 11:20	Rhodomonas sp.	Cryptophyta	1	1.82E+04	um ³ /L 2.05E+07	
SR1	1909090005-F		11:20	Chroococcus microscopicus	Cyanobacteria	528	3.53E+07	1.35E+07	
SR1	1909090005-F	9/9/2019	11:20	Merismopedia sp.	Cyanobacteria	24 692	1.60E+06	1.60E+06	
				TOTAL		692	4.12E+07	2.54E+09	
GS3	1909120034-F		10:05	Achnanthidium minutissimum	Bacillariophyta	2	8.56E+04	3.36E+06	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Cyclotella sp.	Bacillariophyta	5	2.14E+05	2.42E+07	Cannot meet tally in 50 fields.
GS3 GS3	1909120034-F 1909120034-F	9/12/2019	10:05 10:05	Cymbella sp. Epithemia sp.	Bacillariophyta Bacillariophyta	1	4.28E+04 3.63E+04	3.48E+07 1.21E+07	Fragment. Cannot meet tally in 50 fields. Fragment.Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Fragilaria sp.	Bacillariophyta Bacillariophyta	1	3.63E+04	8.56E+06	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Navicula spp.	Bacillariophyta	3	1.28E+05	2.60E+08	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Nitzschia inconspicua	Bacillariophyta	1	4.28E+04	1.03E+06	Cannot meet tally in 50 fields.
GS3 GS3	1909120034-F 1909120034-F		10:05 10:05	Nitzschia sp.	Bacillariophyta Bacilloriophyta	1	4.28E+04 4.28E+04	1.88E+06 5.54E+06	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Reimeria sp. Synedra ulna	Bacillariophyta Bacillariophyta	2	4.26E+04 7.26E+04	6.73E+07	Cannot meet tally in 50 fields. Fragment. Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	cf. Thalassiosira sp.	Bacillariophyta	20	8.56E+05	5.04E+07	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Chlorella sp.	Chlorophyta	62	2.65E+06	1.11E+07	Cannot meet tally in 50 fields.
GS3 GS3	1909120034-F 1909120034-F		10:05 10:05	Monoraphidium minutum Plagioselmis nannoplanctica	Chlorophyta	2 23	8.56E+04 9.84E+05	1.97E+06 1.26E+08	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Rhodomonas sp.	Cryptophyta Cryptophyta	1	3.63E+04	2.53E+07	Cannot meet tally in 50 fields.
GS3	1909120034-F		10:05	Chroococcus microscopicus	Cyanobacteria	162	6.93E+06	1.86E+06	Cannot meet tally in 50 fields.
GS3	1909120034-F	9/12/2019	10:05	Peridinium sp.	Pyrrophyta	1	4.28E+04	7.49E+07	Cannot meet tally in 50 fields.
				TOTAL		289	1.23E+07	7.11E+08	
NFM3	1909120039-F	9/12/2019	10:05	Achnanthidium minutissimum	Bacillariophyta	7	5.16E+05	2.68E+07	
NFM3	1909120039-F		10:05	Aulacoseira sp.	Bacillariophyta	4	2.95E+05	5.93E+07	
NFM3	1909120039-F		10:05	Cocconeis placentula	Bacillariophyta	1	7.38E+04	2.09E+07	Fragment.
NFM3 NFM3	1909120039-F 1909120039-F		10:05 10:05	Cocconeis placentula Cyclotella sp.	Bacillariophyta Bacillariophyta	9	3.63E+04 6.64E+05	1.94E+07 3.91E+07	
NFM3	1909120039-F		10:05	Hippodonta capitata	Bacillariophyta	1	7.38E+04	1.22E+07	
NFM3	1909120039-F	9/12/2019	10:05	Mayamaea sp.	Bacillariophyta	1	7.38E+04	2.09E+06	
NFM3	1909120039-F		10:05	Nitzschia acicularis	Bacillariophyta	2	1.48E+05	1.90E+07	
NFM3 NFM3	1909120039-F 1909120039-F		10:05 10:05	Nitzschia inconspicua Nitzschia palea	Bacillariophyta Bacillariophyta	1	3.63E+04 3.63E+04	5.08E+05 2.94E+06	
NFM3	1909120039-F		10:05	Nitzschia sp.	Bacillariophyta	1	7.38E+04	1.77E+06	Fragment
NFM3	1909120039-F		10:05	Pseudostaurosira brevistriata	Bacillariophyta	10	7.38E+05	9.04E+07	5.000 C (1.000)
NFM3	1909120039-F		10:05	Rhopalodia sp.	Bacillariophyta	1	7.38E+04	1.67E+07	
NFM3 NFM3	1909120039-F 1909120039-F		10:05 10:05	Staurosira construens Staurosirella pinnata	Bacillariophyta Bacillariophyta	3	3.63E+04 2.21E+05	3.00E+06 7.82E+06	
NFM3	1909120039-F		10:05	Synedra ulna	Bacillariophyta	13	9.59E+05	5.15E+08	Fragment.
NFM3	1909120039-F		10:05	Ankistrodesmus nannoselene	Chlorophyta	5	3.69E+05	1.01E+06	-
NFM3	1909120039-F 1909120039-F		10:05 10:05	Chlorella sp.	Chlorophyta	48	3.54E+06	1.48E+07	
NFM3 NFM3	1909120039-F		10:05	Monoraphidium sp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	10	7.38E+04 7.38E+05	3.71E+06 1.48E+08	
NFM3	1909120039-F		10:05	Chroococcus microscopicus	Cyanobacteria	432	3.19E+07	8.54E+06	
				TOTAL		553	4.06E+07	1.01E+09	
GS2	1909120033-F	9/12/2019	10:38	Achnanthidium minutissimum	Bacillariophyta	2	8.56E+04	4.44E+06	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Cocconeis placentula	Bacillariophyta	3	1.28E+05	2.54E+07	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Diatoma sp.	Bacillariophyta	1	3.63E+04	4.79E+06	Cannot meet tally in 50 fields.
GS2 GS2	1909120033-F 1909120033-F		10:38 10:38	Nitzschia acicularis	Bacillariophyta Resillariophyta	1	4.28E+04 1.28E+05	1.89E+07 1.80E+06	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Nitzschia inconspicua Nitzschia sp.	Bacillariophyta Bacillariophyta	2	8.56E+04	5.45E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS2	1909120033-F	9/12/2019	10:38	Planothidium sp.	Bacillariophyta	1	3.63E+04	1.16E+07	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Synedra ulna	Bacillariophyta	1	4.28E+04	1.01E+08	Cannot meet tally in 50 fields.
GS2 GS2	1909120033-F 1909120033-F		10:38 10:38	cf. Thalassiosira sp. cf. Chlamydomonas sp.	Bacillariophyta Chlorophyta	2	8.56E+04 1.71E+05	4.08E+06 2.26E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Chlorella spp.	Chlorophyta	64	2.74E+06	1.15E+07	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38	Scenedesmus sp.	Chlorophyta	8	3.42E+05	3.58E+06	Cannot meet tally in 50 fields.
GS2	1909120033-F		10:38 10:38	Plagioselmis nannoplanctica	Cryptophyta	12 84	5.13E+05	6.59E+07	Cannot meet tally in 50 fields.
GS2	1909120033-F	3/12/2013	10.50	Chroococcus microscopicus TOTAL	Cyanobacteria	188	3.59E+06 8.03E+06	9.63E+05 2.82E+08	Cannot meet tally in 50 fields.
			10.007						
NFM2 NFM2	1909120038-F 1909120038-F		10:50 10:50	Achnanthidium minutissimum	Bacillariophyta Bacillariophyta	6	3.06E+05 2.04E+05	9.60E+06 1.64E+08	
NFM2	1909120038-F		10:50	Aulacoseira sp. Cocconeis placentula	Bacillariophyta Bacillariophyta	4	5.09E+04	1.40E+08	Fragment.
NFM2	1909120038-F	9/12/2019	10:50	Cocconeis placentula	Bacillariophyta	5	2.55E+05	2.50E+08	
NFM2	1909120038-F		10:50	Cyclotella sp.	Bacillariophyta	16	8.15E+05	4.80E+07	
NFM2 NFM2	1909120038-F 1909120038-F		10:50 10:50	Encyonema sp. Epithemia sp.	Bacillariophyta Bacillariophyta	1	5.09E+04 5.09E+04	1.31E+07 1.36E+07	
NFM2	1909120038-F		10:50	Fragilaria sp.	Bacillariophyta	3	1.53E+05	3.31E+07	
NFM2	1909120038-F	9/12/2019	10:50	Melosira varians	Bacillariophyta	4	4.84E+04	1.97E+08	
NFM2	1909120038-F		10:50	Navicula spp.	Bacillariophyta	6	3.06E+05	8.64E+07	
NFM2 NFM2	1909120038-F 1909120038-F		10:50 10:50	Nitzschia inconspicua Nitzschia sp.	Bacillariophyta Bacillariophyta	4	2.04E+05 1.21E+04	3.26E+06 5.81E+05	
NFM2	1909120038-F	9/12/2019	10:50	Pinnularia sp.	Bacillariophyta	1	5.09E+04	1.28E+08	Fragment.
NFM2	1909120038-F	9/12/2019	10:50	Pseudostaurosira brevistriata	Bacillariophyta	6	3.06E+05	4.68E+07	-11
NFM2 NFM2	1909120038-F 1909120038-F		10:50 10:50	Rhoicosphenia curvata Staurosira construens	Bacillariophyta Bacillariophyta	1	1.21E+04 1.21E+04	1.27E+06 1.14E+06	
NEM2	1909120038-F			Staurosira construens Synedra sp.	Bacillariophyta		1.21E+04	1.14E+06 4.62E+06	Fragment.
NFM2	1909120038-F	9/12/2019	10:50	Ankistrodesmus nannoselene	Chlorophyta	8	4.07E+05	1.12E+06	and web that the
NFM2	1909120038-F			Chlorella sp.	Chlorophyta	57	2.90E+06	1.22E+07	
NFM2 NFM2	1909120038-F 1909120038-F			Monoraphidium sp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	1 15	1.21E+04 7.64E+05	8.87E+05 9.80E+07	
NFM2	1909120038-F		10:50	Chroococcus microscopicus	Cyanobacteria	420	2.14E+07	5.73E+06	
				TOTAL	and the second second and the second	563	2.83E+07	1.13E+09	
GS1	1909120032-F	9/12/2010	11:15	Achnanthidium sp.	Bacillariophyta	2	7.26E+04	3.08E+06	
GS1 GS1	1909120032-F		11:15	Amphora sp.	Bacillariophyta	4	3.89E+05	5.25E+06	

SITE	STATION	SAMPLE	SAMPLE	GENUS	DIVISION	TALLY	DENSITY (cells/L)	TOTAL BV	NOTES
		DATE	TIME					um ³ /L	
GS1	1909120032-F		11:15	Cocconeis placentula	Bacillariophyta	2	1.94E+05	1.16E+08	
GS1 GS1	1909120032-F 1909120032-F		11:15 11:15	Cyclotella sp. Encyonema sp.	Bacillariophyta Bacillariophyta	10 4	9.72E+05 3.89E+05	5.73E+07 8.82E+07	
GS1	1909120032-F		11:15	Fragilaria sp.	Bacillariophyta	1	3.63E+04	8.22E+06	
GS1	1909120032-F	9/12/2019	11:15	Gomphonema sp.	Bacillariophyta	1	9.72E+04	1.25E+07	
GS1	1909120032-F		11:15	Nitzschia acicularis	Bacillariophyta	1	9.72E+04	8.46E+06	
GS1 GS1	1909120032-F 1909120032-F		11:15	Nitzschia spp.	Bacillariophyta Recilleriophyta	4	3.89E+05	2.57E+07	Fragment
GS1	1909120032-F		11:15 11:15	Pleurosigma sp. Staurosirella pinnata	Bacillariophyta Bacillariophyta	5	9.72E+04 4.86E+05	8.43E+08 1.15E+07	Fragment.
GS1	1909120032-F		11:15	Synedra sp.	Bacillariophyta	5	4.86E+05	9.62E+07	Fragment.
GS1	1909120032-F		11:15	Synedra sp.	Bacillariophyta	1	9.72E+04	8.52E+07	
GS1 GS1	1909120032-F 1909120032-F		11:15	Synedra ulna	Bacillariophyta	1	9.72E+04	2.01E+08	
GS1	1909120032-F		11:15 11:15	Tryblionella sp. Chlorella sp.	Bacillariophyta Chlorophyta	30	3.63E+04 2.92E+06	1.08E+07 1.22E+07	
GS1	1909120032-F		11:15	Monoraphidium sp.	Chlorophyta	1	9.72E+04	5.50E+06	
GS1	1909120032-F		11:15	Plagioselmis nannoplanctica	Cryptophyta	19	1.85E+06	2.61E+08	
GS1	1909120032-F	9/12/2019	11:15	Chroococcus microscopicus TOTAL	Cyanobacteria	496 589	4.82E+07 5.70E+07	1.29E+07 1.91E+09	
				TOTAL		000	0.702.07	1.012.000	
SFM3	1909120043-F		11:27	Aulacoseira sp.	Bacillariophyta	1	3.96E+04	1.51E+07	
SFM3	1909120043-F		11:27	Bacillaria paxillifer	Bacillariophyta	1	1.21E+04	9.06E+06	
SFM3 SFM3	1909120043-F 1909120043-F		11:27 11:27	Cocconeis placentula Cyclotella meneghiniana	Bacillariophyta Bacillariophyta	6 1	2.38E+05 1.21E+04	2.12E+08 9.64E+06	
SFM3	1909120043-F		11:27	Cymbella sp.	Bacillariophyta	1	3.96E+04	1.98E+07	
SFM3	1909120043-F		11:27	Gomphonema sp.	Bacillariophyta	1	1.21E+04	1.03E+07	
SFM3	1909120043-F		11:27	Melosira sp.	Bacillariophyta	2	7.92E+04	3.82E+08	
SFM3 SFM3	1909120043-F 1909120043-F		11:27 11:27	Navicula sp. Nitzschia spp.	Bacillariophyta Bacillariophyta	1	3.96E+04 1.98E+05	6.42E+07 1.90E+07	
SFM3	1909120043-F		11:27	Sellaphora sp.	Bacillariophyta	1	1.21E+04	2.91E+07	
SFM3	1909120043-F	9/12/2019	11:27	Staurosira construens	Bacillariophyta	8	9.69E+04	1.83E+07	
SFM3	1909120043-F		11:27	Synedra mazamaensis	Bacillariophyta	1	1.21E+04	3.23E+06	-
SFM3 SFM3	1909120043-F 1909120043-F		11:27 11:27	Synedra sp. cf. Thalassiosira sp.	Bacillariophyta Recilleriophyta	5 5	1.98E+05 1.98E+05	1.64E+08 3.98E+07	Fragment.
SFM3	1909120043-F		11:27	Chlorella sp.	Bacillariophyta Chlorophyta	11	4.36E+05	3.56E+06	
SFM3	1909120043-F	9/12/2019	11:27	Coelastrum sp.	Chlorophyta	8	9.69E+04	1.37E+06	
SFM3	1909120043-F		11:27	Crucigenia sp.	Chlorophyta	8	9.69E+04	1.16E+06	
SFM3 SFM3	1909120043-F 1909120043-F		11:27 11:27	Monoraphidium spp.	Chlorophyta	3 4	1.19E+05 1.58E+05	4.73E+06 2.32E+06	
SFM3	1909120043-F		11:27	Scenedesmus sp. Cryptomonas sp.	Chlorophyta Cryptophyta	2	7.92E+04	4.25E+00	
SFM3	1909120043-F		11:27	Plagioselmis sp.	Cryptophyta	13	5.15E+05	1.12E+08	
SFM3	1909120043-F		11:27	Teleaulax sp.	Cryptophyta	1	3.96E+04	2.69E+07	
SFM3	1909120043-F 1909120043-F		11:27	Chroococcus microscopicus	Cyanobacteria	518 2	2.05E+07	1.07E+07	
SFM3 SFM3	1909120043-F		11:27 11:27	cf. Chroococcus sp. Microcystis sp.	Cyanobacteria Cyanobacteria	61	7.92E+04 7.38E+05	1.12E+06 1.04E+07	
011110	10001200101	0/12/2010	1 Fold	TOTAL	Cydnobdctorid	670	2.41E+07	1.21E+09	
			-			120	1212322 1221	1010000 1001	
SFM2 SFM2	1909120042-F 1909120042-F		12:14 12:14	Achnanthidium minutissimum Achnanthidium sp.	Bacillariophyta Bacillariophyta	8 5	2.63E+05 1.65E+05	9.10E+06 7.75E+06	
SFM2	1909120042-F		12:14	Aulacoseira sp.	Bacillariophyta	4	1.32E+05	4.84E+07	
SFM2	1909120042-F		12:14	Cocconeis placentula	Bacillariophyta	3	9.87E+04	5.70E+07	
SFM2	1909120042-F		12:14	Cyclotella sp.	Bacillariophyta	14	4.61E+05	3.91E+07	
SFM2 SFM2	1909120042-F 1909120042-F		12:14 12:14	Diatoma sp. Diatoma vulgare	Bacillariophyta Bacillariophyta	1	7.26E+03 7.26E+03	4.62E+06 8.79E+06	
SFM2	1909120042-F		12:14	Fragilaria sp.	Bacillariophyta	5	1.65E+05	2.40E+07	
SFM2	1909120042-F		12:14	Navicula sp.	Bacillariophyta	1	3.29E+04	1.12E+07	
SFM2	1909120042-F		12:14	Nitzschia dissipata	Bacillariophyta	1	7.26E+03	1.09E+06	
SFM2 SFM2	1909120042-F 1909120042-F		12:14 12:14	Nitzschia inconspicua Nitzschia spp.	Bacillariophyta Bacillariophyta	4	1.32E+05 2.63E+05	2.11E+06 1.74E+07	
SFM2	1909120042-F		12:14	Planothidium sp.	Bacillariophyta	1	3.29E+04	5.04E+06	
SFM2	1909120042-F		12:14	Pseudostaurosira brevistriata	Bacillariophyta	19	6.25E+05	9.58E+07	
SFM2	1909120042-F		12:14	Staurosirella pinnata	Bacillariophyta	2	6.58E+04	1.55E+06	
SFM2 SFM2	1909120042-F 1909120042-F		12:14 12:14	Synedra ulna Synedra ulna	Bacillariophyta Bacillariophyta	1	3.29E+04 6.58E+04	6.19E+07 2.57E+08	Fragment.
SFM2	1909120042-F		12:14	Tabellaria flocculosa	Bacillariophyta	2	1.45E+04	6.28E+06	
SFM2	1909120042-F	9/12/2019	12:14	Thalassiosira sp.	Bacillariophyta	1	7.26E+03	4.11E+06	
SFM2	1909120042-F		12:14	Ankistrodesmus nannoselene	Chlorophyta	6	1.97E+05	5.43E+05	
SFM2 SEM2	1909120042-F 1909120042-F		12:14 12:14	Chlorella sp. Monoraphidium spp.	Chlorophyta Chlorophyta	31 5	1.02E+06 1.65E+05	4.27E+06 7.58E+06	
SFM2	1909120042-F		12:14	Scenedesmus sp.	Chlorophyta	4	2.91E+04	3.65E+00	
SFM2	1909120042-F		12:14	Tetrastrum sp.	Chlorophyta	4	1.32E+05	1.86E+06	
SFM2	1909120042-F		12:14	Plagioselmis nannoplanctica	Cryptophyta	11	3.62E+05	7.28E+07	
SFM2 SFM2	1909120042-F 1909120042-F		12:14 12:14	Aphanocapsa sp. Chroococcus microscopicus	Cyanobacteria Cyanobacteria	34 376	1.12E+06 1.24E+07	5.86E+05 3.32E+06	
SFM2	1909120042-F		12:14	Planktolyngby a sp.	Cyanobacteria	46	1.51E+06	2.38E+06	
				TOTAL		600	1.95E+07	7.56E+08	
NFM1	1909120037-F	0/12/2010	11:45	Achnanthidium minuticeimum	Recillarionh to	5	1.82E+05	1.11E+07	Cannot meet tally in 50 fields
NEM1	1909120037-F 1909120037-F		11:45	Achnanthidium minutissimum Cocconeis placentula	Bacillariophyta Bacillariophyta	2	8.56E+04	1.11E+07 3.23E+07	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
NFM1	1909120037-F	9/12/2019	11:45	Melosira sp.	Bacillariophyta	1	4.28E+04	4.84E+08	Fragment. Cannot meet tally in 50 fields.
NFM1	1909120037-F		11:45	Navicula sp.	Bacillariophyta	2	7.26E+04	7.73E+07	Cannot meet tally in 50 fields.
NFM1 NFM1	1909120037-F 1909120037-F		11:45 11:45	Nitzschia acicularis Nitzschia inconspicua	Bacillariophyta Bacillariophyta	1	4.28E+04 1.71E+05	6.16E+06 4.28E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
NEM1	1909120037-F		11:45	Nitzschia sp.	Bacillariophyta	4	4.28E+04	2.05E+06	Cannot meet tally in 50 fields.
NFM1	1909120037-F	9/12/2019	11:45	Planothidium sp.	Bacillariophyta	1	3.63E+04	1.10E+07	Cannot meet tally in 50 fields.
NEM1	1909120037-F		11:45	cf. Thalassiosira sp.	Bacillariophyta	3	1.28E+05	7.56E+06	Cannot meet tally in 50 fields.
NFM1 NFM1	1909120037-F 1909120037-F		11:45 11:45	Chlorella spp. Tetrastrum sp.	Chlorophyta Chlorophyta	83 4	3.55E+06 1.71E+05	1.49E+07 5.73E+06	Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
NFM1	1909120037-F	9/12/2019	11:45	Plagioselmis nannoplanctica	Cryptophyta	4	1.71E+05	2.20E+07	Cannot meet tally in 50 fields.
NFM1	1909120037-F	9/12/2019	11:45	Chroococcus microscopicus	Cyanobacteria	230	9.84E+06	2.64E+06	Cannot meet tally in 50 fields.

SITE	STATION	SAMPLE		GENUS	DIVISION	TALLY	DENSITY (cells/L)		NOTES
		DATE	TIME	TOTAL		341	1.45E+07	um ³ /L 6.81E+08	
MOVEN	1909120045-F	0/40/0040	13:20		(Densil) and the books	3	2.72E+04	1.28E+06	
	1909120045-F 1909120045-F		13:20	Achnanthidium sp. Aulacoseira spp.	Bacillariophyta Bacillariophyta	5	3.21E+04	1.13E+08	
MOKEM	1909120045-F		13:20	Cyclotella meneghiniana	Bacillariophyta	1	9.08E+03	9.78E+06	
	1909120045-F		13:20	Encyonema sp.	Bacillariophyta	1	5.35E+04	3.30E+07	
	1909120045-F		13:20	Gomphonema sp.	Bacillariophyta	1	9.08E+03	2.01E+06	
	1909120045-F		13:20	Navicula spp.	Bacillariophyta	3	1.60E+05	3.10E+08	
	1909120045-F		13:20	cf. Nupela sp.	Bacillariophyta	1	9.08E+03	1.18E+06	
	1909120045-F 1909120045-F		13:20 13:20	Pinnularia sp. Planothidium lanceolatum	Bacillariophyta Bacillariophyta	1	9.08E+03 9.08E+03	3.39E+07 7.49E+06	
MOKEM	1909120045-F		13:20	Sellaphora sp.	Bacillariophyta	3	2.72E+04	6.23E+07	
	1909120045-F		13:20	Staurosira construens	Bacillariophyta	1	5.35E+04	2.02E+07	
MOKEM	1909120045-F	9/12/2019	13:20	Staurosira construens var. venter	Bacillariophyta	1	5.35E+04	1.51E+06	
MOKEM			13:20	Synedra sp.	Bacillariophyta	1	5.35E+04	3.43E+07	Fragment.
MOKEM			13:20	cf. Thalassiosira sp.	Bacillariophyta	2	1.07E+05	2.15E+07	
MOKEM MOKEM	1909120045-F 1909120045-F		13:20 13:20	Thalassiosira sp.	Bacillariophyta	2	1.82E+04 1.60E+05	2.34E+08 3.28E+06	
MOKEM	1909120045-F		13:20	Ankistrodesmus nannoselene Chlamydomonas sp.	Chlorophyta Chlorophyta	3 1	9.08E+03	3.04E+06	
MOKEM	1909120045-F		13:20	Chlorella sp.	Chlorophyta	15	8.02E+05	3.36E+06	
MOKEM	1909120045-F		13:20	cf. Kirchneriella sp.	Chlorophyta	5	2.67E+05	1.79E+07	
MOKEM	1909120045-F	9/12/2019	13:20	Monoraphidium contortum	Chlorophyta	5	2.67E+05	1.40E+06	
MOKEM	1909120045-F		13:20	Scenedesmus sp.	Chlorophyta	4	2.14E+05	8.06E+06	
MOKEM	1909120045-F		13:20	Cryptomonas sp.	Cryptophyta	1	9.08E+03	8.08E+06	
MOKEM MOKEM	1909120045-F		13:20	Plagioselmis sp.	Cryptophyta	5 1	2.67E+05	2.27E+07	
MOKEM	1909120045-F 1909120045-F		13:20 13:20	Rhodomonas sp. Chroococcus microscopicus	Cryptophyta Cyanobacteria	552	9.08E+03 2.95E+07	4.89E+06 1.55E+07	
MONEM	1303120043-P	3/12/2013	15.20	TOTAL	Cyanobacteria	620	3.24E+07	9.74E+08	
SFM1	1909120041-C		13:30	Achnanthidium minutissimum	Bacillariophyta	1	3.56E+04	2.35E+06	
SFM1	1909120041-C		13:30	Cocconeis placentula	Bacillariophyta	3	1.07E+05	1.79E+08	
SFM1	1909120041-C		13:30	Cyclotella meneghiniana	Bacillariophyta	1	3.56E+04	7.17E+07	
SFM1 SFM1	1909120041-C 1909120041-C		13:30 13:30	Encyonema sp.	Bacillariophyta	1	3.56E+04 9.08E+03	9.98E+06 4.62E+06	
SEM1	1909120041-C		13:30	Eunotia sp. Gomphonema sp.	Bacillariophyta Bacillariophyta	4	3.63E+03	4.02E+00 1.88E+07	
SFM1	1909120041-C		13:30	Melosira sp.	Bacillariophyta	3	2.72E+04	3.33E+08	
SFM1	1909120041-C		13:30	Navicula spp.	Bacillariophyta	4	3.63E+04	1.25E+07	
SFM1	1909120041-C		13:30	Nitzschia inconspicua	Bacillariophyta	5	1.78E+05	3.56E+06	
SFM1	1909120041-C		13:30	Nitzschia spp.	Bacillariophyta	2	7.13E+04	8.02E+06	
SFM1	1909120041-C		13:30	Rhoicosphenia curvata	Bacillariophyta	1	9.08E+03	1.96E+06	
SFM1 SFM1	1909120041-C 1909120041-C		13:30 13:30	Staurosira sp. cf. Thalassiosira sp.	Bacillariophyta Bacillariophyta	20	9.08E+03 7.13E+05	3.21E+05 4.20E+07	
SFM1	1909120041-C		13:30	Ankistrodesmus arcuatus	Chlorophyta	1	3.56E+04	2.80E+06	
SFM1	1909120041-C		13:30	Ankistrodesmus nannoselene	Chlorophyta	7	2.50E+05	6.86E+05	
SFM1	1909120041-C	9/12/2019	13:30	Chlorella sp.	Chlorophyta	52	1.85E+06	7.77E+06	
SFM1	1909120041-C		13:30	Cryptomonas sp.	Cryptophyta	1	3.56E+04	3.17E+07	
SFM1	1909120041-C		13:30	Plagioselmis nannoplanctica	Cryptophyta	23	8.20E+05	1.05E+08	
SFM1	1909120041-C	9/12/2019	13:30	Chroococcus microscopicus TOTAL	Cyanobacteria	448 579	1.60E+07 2.03E+07	4.28E+06 8.40E+08	
				TOTAL		575	2.002107	0.402100	
SREM	1909120036-F		12:37	Achnanthidium minutissimum	Bacillariophyta	6	1.83E+05	8.64E+06	
SREM	1909120036-F		12:37	Bacillaria paxillifer	Bacillariophyta	1	7.26E+03	8.50E+06	
SREM	1909120036-F		12:37	Cocconeis placentula	Bacillariophyta	1	3.06E+04	1.09E+07	Fragment.
SREM	1909120036-F 1909120036-F		12:37 12:37	Cocconeis placentula	Bacillariophyta	6 20	1.83E+05 6.11E+05	1.37E+08	
SREM	1909120036-F		12:37	Cyclotella sp. Encyonema sp.	Bacillariophyta Bacillariophyta	4	1.22E+05	3.60E+07 5.32E+07	
SREM	1909120036-F		12:37	Fragilaria crotonensis	Bacillariophyta	3	2.18E+04	6.57E+06	
SREM	1909120036-F		12:37	Fragilaria sp.	Bacillariophyta	4	1.22E+05	1.79E+07	
SREM	1909120036-F		12:37	Navicula spp.	Bacillariophyta	8	2.44E+05	1.61E+08	
SREM	1909120036-F		12:37	Nitzschia acicularis	Bacillariophyta	1	3.06E+04	2.26E+06	
SREM	1909120036-F		12:37	Nitzschia dissipata	Bacillariophyta	1	3.06E+04	4.03E+06	
SREM SREM	1909120036-F 1909120036-F		12:37 12:37	Nitzschia palea Nitzschia spp.	Bacillariophyta Bacillariophyta	1 9	7.26E+03 2.75E+05	1.18E+06 1.98E+07	
SREM	1909120036-F 1909120036-F		12:37	Pseudostaurosira brevistriata	Bacillariophyta	9 15	4.58E+05	7.02E+07	
SREM	1909120036-F		12:37	Staurosirella pinnata	Bacillariophyta	1	7.26E+03	1.71E+05	
SREM	1909120036-F	9/12/2019	12:37	Synedra sp.	Bacillariophyta	11	3.36E+05	6.65E+07	Fragment.
SREM	1909120036-F		12:37	Ankistrodesmus nannoselene	Chlorophyta	12	3.67E+05	1.01E+06	
SREM	1909120036-F		12:37	Chlorella sp.	Chlorophyta	40	1.22E+06	5.12E+06	
SREM SREM	1909120036-F 1909120036-F		12:37 12:37	Monoraphidium sp. Plagioselmis nannoplanctica	Chlorophyta Cryptophyta	1 15	3.06E+04 4.58E+05	8.64E+05 8.45E+07	
SREM	1909120036-F		12:37	Chroococcus microscopicus	Cyanobacteria	384	4.38E+03 1.17E+07	3.15E+06	
with country			100.001	TOTAL	_,	544	1.65E+07	6.99E+08	

Appendix 7. Picoplankton Enumeration Data Table

SITE ID	STATION	SAMPLE		ANALYSIS	TALLY	DENSITY (cells/L)	TOTAL BV	NOTES
1909110062-H 1909110062-H	GS4 GS4	DATE 9/11/2019 9/11/2019	TIME 9:49 9:49	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	138 10	1.11E+07 8.04E+05		Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
	0.000		0.12000	TOTAL	148	1.19E+07	5.74E+06	,, ,
1909110073-G 1909110073-G		9/11/2019 9/11/2019	10:05 10:05	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	135 6	1.09E+07 4.83E+05		Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
				TOTAL	141	1.13E+07	3.82E+06	· · · · · · · · · · · · · · · · · · ·
1909120036-H 1909120036-H	SREM SREM	9/12/2019 9/12/2019	12:37 12:37	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	160 17	1.29E+07 1.37E+06		Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
				TOTAL	177	1.42E+07	1.12E+07	,
1909110061-H 1909110061-H	GS3 GS3	9/11/2019 9/11/2019	10:24 10:24	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	149 27	1.20E+07 2.17E+06		Cannot meet tally in 50 fields. Cannot meet tally in 50 fields.
				TOTAL	176	1.42E+07	5.16E+06	·,
1909110069-H	SFM2	9/11/2019	11:18	PE - Rich Picocyanobacteria	226	1.82E+07		Cannot meet tally in 50 fields.
1909110069-H	SFM2	9/11/2019	11:18	PC - Rich Picocyanobacteria TOTAL	51 277	4.10E+06 2.23E+07	1.42E+07	Cannot meet tally in 50 fields.
1909120045-H 1909120045-H		9/12/2019 9/12/2019	13:20 13:20	PE - Rich Picocyanobacteria	94 326	8.22E+06 2.85E+07	3.57E+06 3.13E+07	
1909120043-11	NOREIN	9/12/2019	13.20	PC - Rich Picocyanobacteria TOTAL	420	3.67E+07	3.49E+07	
1909110060-H	GS2	9/11/2019	11:00	PE - Rich Picocyanobacteria	278	2.24E+07		Cannot meet tally in 50 fields.
1909110060-H	GS2	9/11/2019	11:00	PC - Rich Picocyanobacteria TOTAL	57 335	4.58E+06 2.69E+07	2.70E+06 2.00E+07	Cannot meet tally in 50 fields.
1909120037-H	NFM1	9/12/2019	11:45	PE - Rich Picocyanobacteria	263	2.12E+07	1.64E+07	Cannot meet tally in 50 fields.
1909120037-H	NFM1	9/12/2019	11:45	PC - Rich Picocyanobacteria TOTAL	59 322	4.75E+06 2.59E+07	2.79E+06 1.92E+07	Cannot meet tally in 50 fields.
1909120042-H	SFM2	9/12/2019	12:14	PE - Rich Picocyanobacteria	164	1.32E+07	7.55E+06	Cannot meet tally in 50 fields.
1909120042-H	SFM2	9/12/2019	12:14	PC - Rich Picocyanobacteria TOTAL	94 258	7.56E+06 2.07E+07	3.84E+06 1.14E+07	Cannot meet tally in 50 fields.
1909120041-E	SFM1	9/12/2019	13:30	PE - Rich Picocyanobacteria	89	1.43E+07	5.46E+06	
1909120041-E	SFM1	9/12/2019	13:30	PC - Rich Picocyanobacteria TOTAL	343 432	5.52E+07 6.95E+07	8.63E+07 9.17E+07	
1909110071-H	SFM4	9/11/2019	9:07	PE - Rich Picocyanobacteria	91	1.26E+07	4.50E+06	
1909110071-H	SFM4	9/11/2019	9:07	PC - Rich Picocyanobacteria TOTAL	335 426	4.65E+07 5.91E+07	6.39E+07 6.84E+07	
1909110070-H	SFM3	9/11/2019	10:08	PE - Rich Picocyanobacteria	133	1.07E+07	6.48E+06	Cannot meet tally in 50 fields.
1909110070-H	SFM3	9/11/2019	10:08	PC - Rich Picocyanobacteria TOTAL	212 345	1.71E+07 2.77E+07	2.10E+07 2.75E+07	Cannot meet tally in 50 fields.
1000100075 H	CEM2	0/10/2010	13:00		57			
1909100075-H 1909100075-H	SFM2 SFM2	9/10/2019 9/10/2019	13:00	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	383	9.17E+06 6.16E+07	3.99E+06 9.83E+07	
				TOTAL	440	7.08E+07	1.02E+08	
1909100076-H 1909100076-H	SFM3 SFM3	9/10/2019 9/10/2019	11:45 11:45	PE - Rich Picocyanobacteria PC - Rich Picocyanobacteria	206 227	1.73E+07 1.90E+07	2.37E+07 1.94E+07	
1303100070-11	01 100	5/10/2013	11.45	TOTAL	433	3.63E+07	4.32E+07	
1909100066-H	GS2	9/10/2019	11:52	PE - Rich Picocyanobacteria	275	2.21 E+07		Cannot meet tally in 50 fields.
1909100066-H	GS2	9/10/2019	11:52	PC - Rich Picocyanobacteria TOTAL	32 307	2.57E+06 2.47E+07	8.57E+05 1.46E+07	Cannot meet tally in 50 fields.
1909100079-G		9/10/2019	11:52	PE - Rich Picocyanobacteria	185	1.49E+07		Cannot meet tally in 50 fields.
1909100079-G	GS2	9/10/2019	11:52	PC - Rich Picocyanobacteria TOTAL	18 203	1.45E+06 1.63E+07	1.34E+06 1.17E+07	Cannot meet tally in 50 fields.
1909100071-H	NFM2	9/10/2019	12:05	PE - Rich Picocyanobacteria	152	1.22E+07		Cannot meet tally in 50 fields.
1909100071-H	NFM2	9/10/2019	12:05	PC - Rich Picocyanobacteria	35	2.81 E+06	6.27E+06	Cannot meet tally in 50 fields.
				TOTAL	187	1.50E+07	1.50E+07	
1909100073-C	NFM4	9/10/2019	9:45	PE - Rich Picocyanobacteria	291	2.34E+07	2.63E+07	Cannot meet tally in 50 fields.

SITE ID	STATION	SAMPLE		ANALYSIS	TALLY	DENSITY (cells/L)	TOTAL BV	NOTES
1909100073-C	NFM4	DATE 9/10/2019	TIME 9:45	PC - Rich Picocyanobacteria TOTAL	65 356	5.23E+06 2.86E+07	um ³ /L 9.24E+06 3.55E+07	Cannot meet tally in 50 fields.
1909100077-H	SFM4	9/10/2019	10:00	PE - Rich Picocyanobacteria	148	1.35E+07	5.16E+06	
1909100077-H	SFM4	9/10/2019	10:00	PC - Rich Picocyanobacteria	308	2.81E+07	2.42E+07	
				TOTAL	456	4.17E+07	2.94E+07	
1909100068-H	GS4	9/10/2019	10:30	PE - Rich Picocyanobacteria	297	2.39E+07	2.68E±07	Cannot meet tally in 50 fields.
1909100068-H	GS4	9/10/2019	10:30	PC - Rich Picocyanobacteria	66	5.31E+06		Cannot meet tally in 50 fields.
				TOTAL	363	2.92E+07	3.62E+07	
1909100072-H	NFM3	9/10/2019	11:06	PE - Rich Picocyanobacteria	278	2.24E+07	197E+07	Cannot meet tally in 50 fields.
1909100072-H	NFM3	9/10/2019	11:06	PC - Rich Picocyanobacteria	35	2.81E+06		Cannot meet tally in 50 fields.
				TOTAL	313	2.52E+07	2.39E+07	
1909100067-H	GS3	9/10/2019	11:12	PE - Rich Picocyanobacteria	217	1.75E+07	1 18F+07	Cannot meet tally in 50 fields.
1909100067-H	GS3	9/10/2019	11:12	PC - Rich Picocyanobacteria	27	2.17E+06		Cannot meet tally in 50 fields.
				TOTAL	244	1.96E+07	1.37E+07	
1909100065-H	GS1	9/10/2019	12:48	PE - Rich Picocyanobacteria	371	7.46E+07	7.63E+07	
1909100065-H	GS1	9/10/2019	12:48	PC - Rich Picocyanobacteria	46	9.25E+06	3.77E+06	
				TOTAL	417	8.38E+07	8.01E+07	
1909090008-H	SREM	9/9/2019	13:42	PE - Rich Picocyanobacteria	416	3.41E+07	1.48E+07	
1909090008-H	SREM	9/9/2019	13:42	PC - Rich Picocyanobacteria	61	5.01E+06	5.12E+06	
				TOTAL	477	3.91E+07	2.00E+07	
1909090005-H	SR1	9/9/2019	11:20	PE - Rich Picocyanobacteria	373	3.66E+07	3.48E+07	
1909090005-H	SR1	9/9/2019	11:20	PC - Rich Picocyanobacteria	36	3.53E+06	1.54E+06	
				TOTAL	409	4.01E+07	3.63E+07	
1909090006-H	SR2	9/9/2019	12:16	PE - Rich Picocyanobacteria	364	5.63E+07	4.84E+07	
1909090006-H	SR2	9/9/2019	12:16	PC - Rich Picocyanobacteria	46	7.11E+06	3.09E+06	
				TOTAL	410	6.34E+07	5.15E+07	
1909090046-F	SR1	9/9/2019	11:20	PE - Rich Picocyanobacteria	358	3.27E+07	1.93E+07	
1909090046-F	SR1	9/9/2019	11:20	PC - Rich Picocyanobacteria	44	4.02E+06	2.96E+06	
				TOTAL	402	3.67E+07	2.22E+07	
1909090007-H	SR3	9/9/2019	12:54	PE - Rich Picocyanobacteria	345	3.85E+07	2.54E+07	
1909090007-H	SR3	9/9/2019	12:54	PC - Rich Picocyanobacteria	59	6.59E+06	3.45E+06	
				TOTAL	404	4.51E+07	2.89E+07	
1909110067-H	NFM4	9/11/2019	9:05	PE - Rich Picocyanobacteria	201	1.62E+07		Cannot meet tally in 50 fields.
1909110067-H	NFM4	9/11/2019	9:05	PC - Rich Picocyanobacteria	63	5.07E+06		Cannot meet tally in 50 fields.
				TOTAL	264	2.12E+07	7.86E+06	
1909110066-H	NFM3	9/11/2019	10:05	PE - Rich Picocyanobacteria	344	4.07E+07	1.88E+07	
1909110066-H	NFM3	9/11/2019	10:05	PC - Rich Picocyanobacteria	64 408	7.57E+06	2.70E+06	
				TOTAL	400	4.83E+07	2.15E+07	
1909110065-H	NFM2	9/11/2019	11:14	PE - Rich Picocyanobacteria	135	1.09E+07		Cannot meet tally in 50 fields.
1909110065-H	NFM2	9/11/2019	11:14	PC - Rich Picocyanobacteria TOTAL	9 144	7.24E+05 1.16E+07	3.57E+05 2.66E+06	Cannot meet tally in 50 fields.
				TOTAL	144	1.102+07	2.000+00	
1909110059-H	GS1	9/11/2019	11:35	PE - Rich Picocyanobacteria	328	2.64E+07		Cannot meet tally in 50 fields.
1909110059-H	GS1	9/11/2019	11:35	PC - Rich Picocyanobacteria TOTAL	14 342	1.13E+06	7.02E+05 1.01E+07	Cannot meet tally in 50 fields.
						2.75E+07	1.012107	
1909100070-H	NFM1	9/10/2019	13:06	PE - Rich Picocyanobacteria	227	2.23E+07	1.03E+07	
1909100070-H	NFM1	9/10/2019	13:06	PC - Rich Picocyanobacteria TOTAL	173 400	1.70E+07 3.92E+07	6.05E+06 1.64E+07	
						5.522,07	1.042.07	
1909100069-H		9/10/2019	14:14	PE - Rich Picocyanobacteria	346	3.86E+07	2.84E+07	
1909100069-H	SREM	9/10/2019	14:14	PC - Rich Picocyanobacteria TOTAL	61 407	6.81E+06 4.55E+07	2.60E+06 3.10E+07	
1909120044-H	SFM4	9/12/2019	10:03	PE - Rich Picocyanobacteria	110	1.64E+07	5.85E+06	
1909120044-H	SFM4	9/12/2019	10:03	PC - Rich Picocyanobacteria	367	5.47E+07	4.24E+07	

SITE ID	STATION	SAMPLE DATE	SAMPLE TIME	ANALYSIS	TALLY	DENSITY (cells/L)	TOTAL BV um ³ /L	NOTES
		BATE	TIME	TOTAL	477	7.10E+07	4.82E+07	
1909100074-H	SFM1	9/10/2019	14:18	PE - Rich Picocyanobacteria	169	1.58E+07	8.28E+06	
1909100074-H	SFM1	9/10/2019	14:18	PC - Rich Picocyanobacteria	254	2.38E+07	2.04E+07	
				TOTAL	423	3.96E+07	2.87E+07	
1909100078-H	MOKEM	9/10/2019	15:02	PE - Rich Picocyanobacteria	128	1.14E+07	4.37E+06	
1909100078-H	MOKEM	9/10/2019	15:02	PC - Rich Picocyanobacteria	284	2.54E+07	1.92E+07	
				TOTAL	412	3.68E+07	2.35E+07	
1909110072-H	MOKEM	9/11/2019	12:58	PE - Rich Picocyanobacteria	119	1.29E+07	4.61E+06	
1909110072-H		9/11/2019	12:58	PC - Rich Picocyanobacteria	323	3.51E+07	2.87E+07	
				TOTAL	442	4.80E+07	3.33E+07	
1909120046-F	SFM4	9/12/2019	10:03	PE - Rich Picocyanobacteria	183	1.89E+07	8.21E+06	
1909120046-F	SFM4	9/12/2019	10:03	PC - Rich Picocyanobacteria	251	2.59E+07	2.12E+07	
				TOTAL	434	4.47E+07	2.94E+07	
1909120032-H	GS1	9/12/2019	11:15	PE - Rich Picocyanobacteria	189	1.52E+07	9.48E+06	Cannot meet tally in 50 fields.
1909120032-H	GS1	9/12/2019	11:15	PC - Rich Picocyanobacteria	27	2.17E+06		Cannot meet tally in 50 fields.
				TOTAL	216	1.74E+07	1.11E+07	and the second
1909120038-H	NFM2	9/12/2019	10:50	PE - Rich Picocyanobacteria	121	9.73E+06	642E±06	Cannot meet tally in 50 fields.
1909120038-H	NFM2	9/12/2019	10:50	PC - Rich Picocyanobacteria	5	4.02E+05		Cannot meet tally in 50 fields.
1303120030-11	INT WZ	3/12/2013	10.50	TOTAL	126	1.01E+07	6.75E+06	cannot meet tany in 50 lields.
1909120043-H	SFM3	9/12/2019	11:27	PE - Rich Picocyanobacteria	198	1.62E+07	5.80E+06	
1909120043-H	SFM3	9/12/2019	11:27	PC - Rich Picocyanobacteria	214	1.76E+07	8.14E+06	
1303120043-11	01100	5/12/2015	11.27	TOTAL	412	3.38E+07	1.39E+07	
1909110068-H	SFM1	9/11/2019	12:13	PE - Rich Picocyanobacteria	168	1.69E+07	7.34E+06	
1909110068-H	SFM1	9/11/2019	12:13	PC - Rich Picocyanobacteria	232	2.33E+07	1.25E+07	
1000110000-11	01 111	0/11/2010	12.10	TOTAL	400	4.02E+07	1.99E+07	
1909120039-H	NFM3	9/12/2019	10:05	PE - Rich Picocyanobacteria	268	2.16E+07	1 20E+07	Cannot meet tally in 50 fields.
1909120039-H	NFM3	9/12/2019	10:05	PC - Rich Picocyanobacteria	32	2.57E+06		Cannot meet tally in 50 fields.
				TOTAL	300	2.41E+07	1.34E+07	32840943033924399459949997949992400 🖉 🕫 6959494294 - 62259429693
1909120033-H	GS2	9/12/2019	10:38	PE - Rich Picocyanobacteria	351	2.82E+07	1.48E+07	Cannot meet tally in 50 fields.
1909120033-H	GS2	9/12/2019	10:38	PC - Rich Picocyanobacteria	34	2.73E+06		Cannot meet tally in 50 fields.
				TOTAL	385	3.10E+07	1.66E+07	
1909120034-H	GS3	9/12/2019	10:05	PE - Rich Picocyanobacteria	341	2.86E+07	1.50E+07	
1909120034-H	GS3	9/12/2019	10:05	PC - Rich Picocyanobacteria	66	5.53E+06	5.00E+06	
				TOTAL	407	3.41E+07	2.00E+07	
1909110063-H	SREM	9/11/2019	12:13	PE - Rich Picocyanobacteria	227	1.83E+07	6.97E+06	Cannot meet tally in 50 fields.
1909110063-H	SREM	9/11/2019	12:13	PC - Rich Picocyanobacteria	39	3.14E+06	2.56E+06	Cannot meet tally in 50 fields.
				TOTAL	266	2.14E+07	9.53E+06	
1909120035-H	GS4	9/12/2019	9:30	PE - Rich Picocyanobacteria	294	2.46E+07	1.45E+07	
1909120035-H	GS4	9/12/2019	9:30	PC - Rich Picocyanobacteria	108	9.05E+06	5.64E+06	
				TOTAL	402	3.37E+07	2.01E+07	
1909120040-H	NFM4	9/12/2019	9:10	PE - Rich Picocyanobacteria	345	2.77E+07	1.63E+07	
1909120040-H	NFM4	9/12/2019	9:10	PC - Rich Picocyanobacteria	78	6.27E+06	5.68E+06	
				TOTAL	423	3.40E+07	2.20E+07	
1909110064-H	NFM1	9/11/2019	12:12	PE - Rich Picocyanobacteria	218	2.92E+07	1.93E+07	
1909110064-H	NFM1	9/11/2019	12:12	PC - Rich Picocyanobacteria	189	2.53E+07	1.58E+07	
				TOTAL	407	5.46E+07	3.51E+07	
				and a second sec				

Appendix 8. Zooplankton Enumeration Data Table

es ass	000000000000000000000000000000000000000	87700000000000000000000000000000000000	0004
species s biomass (Jug d.w./L)	0003 0018 0018 0018 0018 0018 0028 0028 0028		0.006 0.010 0.000 0.004
biomass factor	0.230 0.486 0.486 0.486 0.425 0.446 0.445 0.045 0.045 0.045 0.045 0.0000000000	0.486 0.746 0.746 0.747 0.731 0.731 0.033 0.033 0.00000000	0.230 0.397 0.002 0.505
#/F	0012 0037 00125 00125 00125 00125 00122 00122 00122 00122 00122 00122 00122 00122 00122 00122 00122 00120 00120 00120 00120 00120 00120 00122 00022 00020 00022 0002000000	0.098 0.0330 0.033 0.0330 0.0330 0.0330 0.0330 0.0330 0.0330 0.0330 0.03300 0.03300 0.0330 0.03300000000	0.025 0.025 0.008 0.008
total sample aliquot count #individuals volume (mi) factor counted (mi)		พบสุดการการี สายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสายการสาย	თ თ <i>← ←</i>
liquot count (ml) factor			0.01 0.01 0.01
aliquot (ml)	7000 7000 7000 7000 7000 7000 7000 700	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28.0 28.0 28.0 28.0
	250 250 250 250 250 250 250 250 250 250		270 270 270 270
tow volume filtered (L)	01 8211 01 82110 01 8211000000000000000000000000000000000	01 8211 01 82110 01 82110 01 8211000000000000000000000000000000000	1178.10 1178.10 1178.10 1178.10
net radius (cm)	<i>Х</i> ВАЯВАВАВАВАВАВСКАВАВАВАВАВАВАВАВАВАВАЗС 2010 - 2010	***************************************	***
tow (m)			6.0 6.0 6.0
division	Cladoceres Cladoceres Cladoceres Cladoceres Cladoceres Copepoda Copepoda Copepoda Copepoda Copepoda Copepoda Routera R	Cladocera Cladocera Cladocera Ostracia Copepoda Copepoda Copepoda Copepoda Copepoda Rotifera	Cladocera Cladocera Cladocera Cladocera
species	guitata jonginosatris sphareticus prodryturum latissima copepodid copepodid edax sp. edax sp. edatas sp. edatas edatas sp. edatas sp. edatas sp. edatas sp. edatas		spp. Iongirostris spp. dispar
genus	Alona Sermina Cryydranosoma kurzia kurzia kurzia kraphanosoma kurzia karadia negoti kesonyo Brachiorus Brachio	Bosmina Diaphons Diaphonsoma castracod castracod castracod castracod control Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Microcyclops Pseudodd Sectaelia Kercae	Alona Bosmina Macrothrix Monospilus
notes	High defruits and sit High obtritus and sit	High dernus, High	Hign algees and detrints. Unbacto to meet tally, Hign algees and detrints unbacto to meet tally. High algees and detritus. Unable to meet tally. High algees and detritus. Unable to meet tally.
time			10:30 10:30 10:30
date	(LSap.2019 (LSap.2019) (LSap.2019 (LSap.2019)		10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019
container ID	190910073-4 1 190910073-4 1 19	1999100776 1 1909100776 1 1900776 1 1909100776 1 1909100776 1 1909100776 1 1909100776 1 1909100776 1 1909100776 1 1909100776 1 1900776	1909100068-G 1 1909100068-G 1 1909100068-G 1 1909100068-G 1
site	NFWA NFWA NFWA NFWA NFWA NFWA NFWA NFWA		2 2 2 2 2 2 2 2 2 2

species biomass (Jug d.w./L)	0.000 0.012 0.012 0.012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.000	0.011 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.131 0.016 0.0148 0.0254 0.001 0.0014 0.0014 0.0014 0.0014 0.0014 0.0012 0.0014 0.0012 0.0012 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0016 0.00016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0000000000
sp biomass bic factor d	00050 1423 32302 32302 32302 32302 32302 32302 00413 00013 00013 00014 00014 00014 00014 00014 00014 00014 00014 00014 00014 00013 00014 00014 00014 000112 00014 000112 000100000000	0.483 0.184 0.184 0.039 0.865 0.2419 0.865 0.2419 0.034 0.0419 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0039 0.0028 0.0039 0.0028 0.0039 0.0028 0.00028 0.00028 0.00028 0.00028 0.000028 0.00028 0.000028 0.000028 0.000028 0.000028 0.000028 0.0000000000	1849 0.078 0.078 0.0539 0.0539 0.0539 0.053 0.053 0.0031 0.004 0.004 0.004 0.005 0.005 0.0012 0.0017 0.0030 0.017 0.0030 0.017 0.0030	0.319 0.319 0.0204 0.0204 0.0214 0.0217 0.0217 0.02140000000000000000000000000000000000
#/L bio	00033 00033 00033 00033 00035 00000000	00002 00075 00075 00075 00075 00075 00075 00072 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 000002 000002 000000	0.006 0.006 0.006 0.006 0.0043 0.0006 0.0043 0.0006 0.00125 0.0006 0.00128 0.0006 0.0006 0.0006 0.0006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00000 0.00006 0.00000 0.00006 0.000000	0.410 0.410 0.246 0.246 0.032 0.0820000000000
	4-4-5-0-20000000000000000000000000000000		00000000000000000000000000000000000000	0000 000 000 000 000 000 000 00
total sample aliquot count #individuals volume (ml) factor counted (ml)				
liquot count (ml) factor	238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53 0 54 0 55 0 55 0 55 0 10 0 10 <td< td=""><td>360 000 360 0000000000</td><td>2333 234 2353 2353 2353 2353 2353 2353 2</td></td<>	360 000 360 0000000000	2333 234 2353 2353 2353 2353 2353 2353 2
total sample aliq volume (n (ml)	22222222222222222222222222222222222222	1995 52 52 52 52 52 52 52 52 52 52 52 52 52	2260 2260 2260 2260 2260 2260 2260 2260	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
s tow volume filtered (L)	1178 10 1178 1	1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50 1963.50	18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211 18211	018711 0187110 0187110 0187110 0187110 0187110 0187110 0187110000000000
net radius (cm)	*******************	***********	**********	*****************
tow (m)	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	00000000000000000000000000000000000000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
division	Ostracoda Copepoda Copepoda Copepoda Copepoda Copepoda Rotifera Ro	Cladocera Cladocera Ostracoda Copepoda Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Ostracoda Copepoda Copepoda Copepoda Copepoda Copepoda Rotriera R
	00000	0000000	000	000000
species				
spe	copepodid copepodid (orbesi angularis angularis angularis antinae anti	urum odid forus	odid anis sa anis sa anis	Iongirostris copepodid copepodid angularis caudatus quadridentatus dossuarius dossuarius unicomis iongiseta mira cochiearis cochiearis
		brachyurum spp. copepodid spp. spp. calyciflorus earlinae spp. veliger	spp. copepodid spp. calvetiforus cochinearis earlinae tropica spp. vulgaris vulgaris veliger	longirostris copepodid copepodid spp. angularis caud&us quaaridenta spp. dossuarius longiseta mira cochieanis
Snue	ostracci dataoid cyclopola peudodiaptomus peudodiaptomus dosini dosini ceretala fecereta	opes ans second	dhnia durs a a a anis	oid uus a a luus luus luus luus a a
ŏ	ostracod calanoid cyclophodiapti budioid budioid budioid budioid budioid budioid budioid budioid budioid budioid budioid Kerzella	Daphanosoma liyocryptus ostracod cyclopoid Eucyclops Peracyclops naupil baelioid Brachonus Euchlanis Euchlanis Euchlanis Euchlanis Euchlanis Bivatvia Bivatvia	Ceriodaphnia cyclopoid naupli Brachionus Keratella Keratella Keratella Lecane Lecane Polyantira Bivatria Bivatria	Bosmina ostracod ostracod ostracod ostracod harpacticold harpacticold harpacticold harpacticold Brachionus Brachionus Brachionus Conochilus Conochilus Filma Hexathra Keratella
	High algae and derrus. Unable to meet raily, High algae and derrus. Unable to meet raily High algae and derrus. Unable to meet raily	High algae and dermus. Unable to meet faily, High algae and dermus. Unable to meet faily,		
	b) b)<		High darftus. Undale to meet taily. High darftus. Undale to meet taily. High darftus. Lindales to meet taily. High darftus. Lindales to meet taily. High darftus. Undale to meet taily. High darftus. Undale to meet taily. High darftus. Undale to meet taily. High darftus. Lundale to meet taily. High darftus. Lundale to meet taily. High darftus. Lundale to meet taily. High darftus. Undale to meet taily. High darftus. Undale to meet taily. High darftus. Undale to meet taily.	
notes		The second secon	Unable Unable Unable Unable Unable Unable Unable Unable Unable Unable Unable Unable	
	and det and de	and det and de	detritus. detritus. detritus. detritus. detritus. detritus. detritus. detritus. detritus.	
	(c) algorer (c) al	ich algae big algae con algae con algae con algae con algae con algae con algae con algae con algae con algae	55555555555555555555555555555555555555	
	ITITITITITITITI	IIIIIIIIIIIIII		
time	$\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$\begin{array}{c} 1110\\ 110\\ 1110\\ 10$		$\begin{array}{c} 11.45\\ 11$
date	10-58P-2019 10-58P	10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019 10-589-2019	10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019 10-569-2019	10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019
0				
container IC	1909100085 G 1909100085 G 190910085 G 19090085 G 1900085 G 19000085 G 19000085 G 1900085 G 1900085 G 1900085 G 1900085 G 1900005 G 1900005 G 190005 G 190005 G 1900005 G 190005 G 1	190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6 190910072.6	1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6 1909100067-6	1309100076.C 1309100076.C 1309100076.C 1909100776.C 190910776.C 1909100776.C 190910776.C 1909100776.C 19007
site	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SPM3 SPM3 SPM3 SPM3 SPM3 SPM3 SPM3 SPM3

se SS		000000000000000000000000000000000000000		m # m O O O O V # = 10 @ = = C =
species biomass (µg d.w./L)	$\begin{array}{c} 0.001\\ 0.003\\ 0.017\\ 0.017\\ 0.014\\ 0.003\\ 0.003\\ 0.003\\ 0.001\\ 0.003\\ 0.001\\ 0.003\\ 0.001\\ 0.003\\ 0.010\\ 0.003\\ 0.010\\ 0.003\\ 0.$	0.020 0.020 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	0.003 0.008 0.008 0.009 0.019 0.019 0.0110 0.0112 0.0112 0.0112 0.0112 0.0010 0.0000 0.0010 0.0010 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.000000
biomass factor	0.012 0.031 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	0.453 0.226 0.029 0.014 0.022 0.014 0.012 0.011 0.011 0.015 0.015 0.015	0.641 3.545 3.545 0.077 0.077 0.077 0.077 0.192 0.003 0.003 0.003 0.001 0.0115 0.001 0.001 0.003 0.007 0.0078 0.0022 0.0078 0.0028 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.00777 0.00777 0.00777 0.0078 0.00777 0.00777 0.0078 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.0077777 0.0077777777	0.125 0.319 0.370 0.370 0.370 0.372 0.362 4.021 0.038 0.038 0.038 0.038 0.038 0.038 0.038
#//	0.082 0.164 0.082 0.082 0.082 0.082 0.082 0.082 0.082	0.045 0.045 0.135 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	0.045 0.015 0.015 0.045 0.045 0.030 0.030 0.015 0.030 0.045 0.030 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.035 0.0000000000	$\begin{array}{c} 0.023\\ 0.023\\ 0.023\\ 0.0113\\ 0.0113\\ 0.023\\ $
total sample aliquot count #individuals volume (mi) factor counted (mi)	-04~%	-08009006	ww#2202-w8-w0-w-0w0-8	$\leftarrow \mathit{O} \leftarrow \leftarrow \leftarrow \mathit{P} \lor \mathit{O} \lor \mathit{O} \lor \leftarrow \leftarrow \overset{\frown}{O} \lor \overset{\frown}{O} \leftarrow \lor \leftarrow \leftarrow \overset{\frown}{O} \lor \overset{\frown}{O} \leftarrow \lor \leftarrow \lor$
count #i factor	888888888888888888 8888888888888888888	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
aliquot (ml) 1	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$	000000000000000000000000000000000000000
total sample volume (ml)	290 290 290 290 290 290 290 290 290 290	266 266 266 266 266 266 266 266 266 266	265 265 265 265 265 265 265 265 265 265	280 280 280 280 280 280 280 280 280 280
tow volume filtered (L)	01.8211 01.8210 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711	1178.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.10 1779.1	01.8211 01.82111 01.8211 01.8110 01.82110 01.82110 01.8211000000000000000000000000000000000	1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45
net radius (cm)	888888888888888	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	******
tow (m)		$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $		072 072 072 072 072 072 072 072 072 072
division	Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Cladocera Cladocera Cladocera Cladocera Cospepoda Cospepoda Cospepoda Rotifera Roti	Cladocera Cladocera Cladocera Cladocera Copepoda Copepoda Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera
species	crassa earlinae hiranalis tropica tropica tropica spp. spp. spp. vviiger veiiger	spp. copepodid budepestinensis caudatus spp. longasta cochieans bula vulgaris velgar	longinostris spp. dispar copepodid spp. angularis angularis spp. cochearis var. tecta angularis cochearis var. tecta paulus tropica tropica tropica tropica vulgaris vulgaris veligaris veligaris veligaris	spp. longinostris spp. dispar copepodid copepodid eoganis havanaensis spp. unicomis
Snue	Keratella Keratella Keratella Keratella Keratella Keratella Keratella Plationus Plationus Synchratea Testudinella Trichotra	Certodaphilia nauchio auchiona Brachnonus Brachnonus Brachnonus Filmia Keratella Keratella Monosyla Polyarthra Rivahra Bivahra	Bosmina Bosmina Cendidatimia Cendidatimia ostroocid antonospilus ostroocid nauruli Asplantina Erachioid Brachioid Brachioid Brachioid Brachioid Recetalia Keratalia Keratalia Keratalia Keratalia Monostyla Monostyla Potonina Potonina Recetalia Kera	Alona Bosmia Ceriodaphina Procryptus Monospilus Stracod calanoid Eucyclops F
notes	8 8 8 8 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8	High derthus. Unable to meet taily High derthus. Unable to meet taily	High deftus. Uncle to meet taly, High deftus.	High algae and derthus. Unable to meet tafy, they algae and derthus. Unable to meet tafy, High algae and derthus. Unable to meet tag, High algae and derthus. Unable to meet tag, High algae and derthus. Unable to meet tafy High algae and derthus. Unable to meet tafy
time	11:45 11:45 11:45 11:45 11:45 11:45 11:45 11:45 11:45	11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52	11:52 11:521	12:05 12:05 12:05 12:05 12:05 12:05 12:05 12:05 12:05 12:05 12:05
date	10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019 10-Sep-2019	10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019 10.56p.2019	(1) (5, 5(2), 2019) (1) (5	10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019 10.58p.2019
container ID	190910076-6 11 1909100076-6 11 1909100076-6 11 1909100076-6 11 1909100076-6 11 190910076-6 11 1909100776-6 11 1909100076-6 11 1909100076-6 11 1909100076-6 11 1909100076-6 11 190910000000000000000000000000000000	130910008-6 11 130910008-6 11 13091008-6 11 1309108-6 11008008-6 11008008-6 11008008-6 1008008-6 1008008-6 1008008-6 1008008-6 1008008-6 1	1909100794 10 1909100794 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 1909100705 10 19091000705 10 190910000000000000000000000000000000	199910071-6 (19901071-6 (19901071-6)))))))))))))))))))))))
aite	SFM3 SFM3 SFM3 SFM3 SFM3 SFM3 SFM3 SFM3	52 52 52 52 52 52 52 52 52 52 52 52 52 5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NEW2 NEW2 NEW2 NEW2 NEW2 NEW2 NEW2 NEW2

species biomass (Jug d.w./L)	$\begin{array}{c} 0.000\\ 0.$	$\begin{array}{c} 0.010\\ 0.011\\ 0.0052\\ 0.0073\\ 0.007\\ 0.007\\ 0.007\\ 0.000\\ $	$\begin{smallmatrix} 0.002\\ 0.003$
biomass factor	0.006 0.009 0.002 0.002 0.003 0.003 0.106	0.230 0.486 0.486 0.1750 0.778 0.078 0.013 0.013 0.013 0.035 0.035 0.035 0.035 0.035	0.106 0.106 2.833 0.455 0.455 0.455 0.455 0.075 0.374 0.374 0.019 0.019 0.019 0.019 0.019 0.01150000000000
1/#	0.023 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	0.045 0.022 0.022 0.022 0.052 0.045 0.045 0.045 0.045 0.045 0.022 0.045 0.022 0.022 0.022 0.067 0.067	0.016 0.146 0.146 0.0146 0.0245 0.0245 0.0245 0.0245 0.016 0.0000000000
total sample aliquot count #individuals volume (ml) factor counted (m)	F 0 0 0 0 0 0 0 7 7 0 0	0 - 0 - 0 - 2 ² - 0 0 - 0 - 7 0 - 7 0 0 2	- 0 - m 4 5 8 6 4 m 0 - 5 z - 5 m m m 6 6
count # factor	$\begin{smallmatrix} 0.02\\ 0.$	$\begin{smallmatrix} 0.02\\0.02\\0.02\\0.02\\0.02\\0.02\\0.02\\0.02$	$\begin{array}{c} 0.0\\ 0.02\\ $
aliquot (ml)	0 0 0 0 0 0 0 0 0 0	$\begin{smallmatrix} & 0 \\ & $	16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0
total sample volume (ml)	280 280 280 280 280 280 280 280 280 280	265 265 265 265 265 265 265 265 265 265	255 255 255 255 255 255 255 255 255 255
tow volume filtered (L)	1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45	01.8711 01.8711	981.75 98
net radius (cm)	*********	*****************	\$
tow (m)	072 072 072 072 072 072 072 072 072 072	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
division	Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Cladocera Cladocera O Stracoda O Stracoda Copepoda Rotifera Rotifa Rotifera Rotifera Rotifera Rotifer	Cladoceria Cladoceria Cladoceria ostracola ostracola ostracola ostracola copepoda copepoda copepoda copepoda copepoda copepoda copepoda coperoda copepoda coperoda co
species	longispina cochiaans crossaa tropica sipo lunaris quadricomis sipo quadricomis sipo quadricomis	guttata spp. copepoid rubelus angularis angularis angularis calvatus calvatus conteans spp vurgaris spp vurgaris spp vurgaris spp	spp spp spp dispation dispation copepodid copeopid d spp angularis budapesinensis budapesinensis budapesinensis budapesinensis coorbeans coorbeans coorbeans spp coorbeans coorbeans spp tropical spp tropical spp unalisi angularis angularis angularis angularis angularis angularis angularis spp tropical spp tropical spp
snueb	Kellrothta Keratella Keratella Keratella Keratella Keratella Monostyla Platonus Platonus Platonus Platonus Platonus Platonus Rovatria	Alona Bosmina Cerodaphina Cerodaphina cyclopoid marcocyclopoid marcocyclopoid Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Concorfilus Concorfilus Cerotharia Lepadella Lepadella Prosecutina Reattra Prosecutinal Concorfilus	Alona Carodathina Carodathina Monorphanosoma Monorphanosoma Monorphanosoma Monorphano Moropholea Moropholea Moropholea Pealonuus Brachinuus Brachinuus Brachinuus Brachinuus Brachinuus Brachinuus Reataila Kerataina Kerataina Kerataina Kerataina Kerataina Kerataina Keratainai Kerataina K
notes	High algae and dertrus. Unable to meet tally, High algae and dertrus. Unable to meet tally.	High stit. Unable to meet taily, High stit. Unable to meet taily,	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
time	12288888888888888888888888888888888888	1248 1248 1248 1248 1248 1248 1248 1248	$\begin{array}{c} 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$
date	J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019 J.Sep.2019	(1.58),2019 (1.58)	(b. 5ap. 2019) (b. 5ap. 2019) (c. 5a
container ID	1909100071-G 10. 1909100071-G 10.	13091000656 10 130931000656 10 130931000656 10 130931000656 0 130931000656 0 130931000556 0 13093100556 0 130931000556 0 13095600000556 0 1309500000556 0 130950000556 0	1909100075 G 10 1909100075 G 10 190910000000000000000000000000000000
at s	NFM2 NFM2 NFM2 NFM2 NFM2 NFM2 NFM2 NFM2	ଞ <u>ଚ</u> ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ	SPAC SPAC SPAC SPAC SPAC SPAC SPAC SPAC

1					
species biomass (Jug d.w./L)	0.005	$\begin{array}{c} 0.005\\ 0.005\\ 0.001\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.000\\ 0.$	$\begin{array}{c} 0.223\\ 0.060\\ 0.064\\ 0.005\\ 0.005\\ 0.003\\ 0.005\\ 0.001\\ 0.005\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.002\end{array}$	$\begin{array}{c} 0.281\\ 0.007\\ 0.004\\ 0.004\\ 0.074\\ 0.074\\ 0.074\\ 0.074\\ 0.007\\ 0.000\\ 0.$	0.003
biomass factor	0.056	0.264 0.397 0.0065 0.0043 0.0043 0.0034 0.0034 0.0034 0.003 0.007 0.0009 0.0006 0.00006 0.00000 0.0006 0.00000 0.0006 0.00000000	1.770 0.355 0.0347 0.044 0.044 0.044 0.007 0.035 0.035 0.035 0.035 0.035 0.035 0.035	3.863 0.133 0.133 0.133 0.133 0.1440 0.680 0.034 0.0734 0.0734 0.005 0.0005 00005 0000500000000	0.166
µ 1/#	0.097 0.146	0.021 0.062 0.062 0.021 0.042 0.042 0.062 0.062 0.062 0.062 0.021 0.021 0.021 0.023 0.083 0.083 0.083 0.083	0.126 0.063 0.063 0.1892 0.1892 0.189 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.126	0.073 0.073 0.073 0.073 0.073 0.073 0.078 0.018 0.018 0.018 0.018 0.018 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073	0.016
aliquot count #individuals (ml) factor counted	ဖတ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	N~8400N~~~~N~~0	๔๙๛๔๙๙๐๐ ๓๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	e
count # factor	0.02	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.01
aliquot (ml)	16.0 16.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	32.0
total sample volume (ml)	255 255	265 265 265 265 265 265 265 265 265 265	260 260 260 260 260 260 260 260 260 260	250 250 250 250 250 250 250 250 250 250	200
tow volume littered (L)	981.75 981.75	1276.28 1276.2	137445 137445 137445 137445 137445 137445 137445 137445 137445 137445 137445 137445 137445 137445	687 23 687 23 68	1178.10
netradius (cm) 1	25 25	************	*****	\$	25
tow (m)	5.0		077 077 077 077 077 077 077 077 077 077	សលលលលលលលលលលលលលលលលលលលលល តំតាត់តំតាត់តំតាត់តាត់តាត់តាត់តាត់តាត់តា	6.0
division	Rotifera Bivalvia	Cladocerta Cladocerta Cladocerta Cladocerta Cladocerta Copepoda Copepoda Copepoda Rotifera Ro	Copepoda Copepoda Copepoda Rotifera Rot	Cladocera Cladocera Cladocera Ostracida Ostracida Copepoda Copepoda Copepoda Rotifer	Cladocera
species	spp. veliger	spp. brachyuurum spp. copepodid angularis angularis nonicalispina cochlearis cochlearis cochlearis cochlearis pipo tropica mra mra wulganis spp. voliger	copepodid spp spp cochlearis earlinae leontina sastinae costariocerca quadriocmis spp voliger veliger	longinostris crystallina crystallina copepodid copepodid copepodid copepodid spp. spp. vulgaris spp. vulgaris spp.	longirostris
snueb	Trichocerca Bivalvia	Alona Bosmina Daphanosoma Diyoroxptus ostrosoptus ostrosoptus ostrosoptus cyclopoid Bualpin Bualpin Bualpin Bualpin Refectala Keratala Ker	calanoid calanoid naupli Euchanis Kerctella Kerctella Kerctella Kerctella Kerctella Ronorsyla Polyarthra Polyarthra	Bosmina Bosmina Slda Slda occopold occonodid occopold narphi Asplandid Asplandid Brachinuus Brachinuus Brachinuus Brachinuus Recetella Keretella K	Bosmina
notes	na Na	High sitr and derrius. Unable to meet raily High sitr and derrius. Unable to meet raily High sit and derrius. Unable to meet raily	High algae and sit. Unable to meet tally High algae and sit. Unable to meet tally High algae and sit. Unable to meet tally High algae and sit. Unable to meet tally. High algae and sit. Unable to meet tally.	High sit and derfus. Unable to meet tally High sit and derfus. Unable to meet tally	High detritus.
time	13.00 13.00	$\begin{array}{c} 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\$	11111111111111111111111111111111111111	$\begin{array}{c} 4.4\\ 4.4\\ 4.4\\ 4.4\\ 4.4\\ 4.4\\ 4.4\\ 4.4$	15.02
date	10-Sep-2019 10-Sep-2019	(0.5ap.2019 (1.5ap.2019 (1.5ap.2019) (1.5ap.	(1.5ep.2019 (1.5ep.2019) (1.5ep.2019 (1.5ep.2019) (1.5ep	(1):549,2019 (1):5542,2019 (1):5542,2019 (1)	10-Sep-2019
container ID	1909100075-G 10 1909100075-G 10	1909100716 1 1909100716 1 1900700716 1 1900700716 1 1900700716 1 190070070 1 190070070 1 190070070 1 190070070070 1 190070070 1 1900700700 1 190070070 1 1900700070 1 1900700070 1 1900700070 1 1900700070 1 1900700070 1 19007000700000000000000000000000000000	1303100085 6 11 1303100085 6 11 13030100085 6 11 1303010085 6 110085 6 11 1303010085 6 11 1303010085 6 11 1303010085 6 11 1303010085 6 11 1303010085 6 11 1303010085 6 11 130300085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 1100085 6 100085 6 100085 6 100085 6 100085 6 100085 6 100085 6 100085 6 100085 6 100085 6	1909100746 11 1909100746 11 190010746 110000746 11000746 11000746 110000746 1100000	1909100078-G 10
site	SFM2 1 SFM2 1	NFMI NFMI NFMI NFMI NFMI NFMI NFMI NFMI	SREM SREM SREM SREM SREM SREM SREM SREM	SFMI 1 SFMI 1 SF	MOKEM 1
,					

cies lass JL)	2888824588888666888888888888888888888888	828222888828888888888888888888888888888	34 23 00 00 00 00 00
species ss biomass r (Jug d.w./L)	0001 0000 00000 00000 0000 0000 0000 0000 0000 0000 0000 00000 0000 000		0 0.034 0 0.033 0 0.033 0 0.005 0 0.040 0 0.710 0 0.710 0 0.710 0 0.000
biomass factor	0.716 0.252 0.252 0.232 0.232 0.049 0.028 0.0000000000	0172 0319 00575 0557 0557 0557 0557 0557 0557 01733 0557 0073 0073 0073 0073 0073 0073 0	1.270 1.137 0.428 0.006 0.717 0.302 0.302 0.080 0.080
#/F	0.005 0.011 0.0216 0.0258 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0051 0.0058 0.00	0.016 0.0248 0.0008 0.0008 0.0008 0.0004 0.0159 0.0168 0.00180 0.00180000000000	0.027 0.053 0.053 0.053 0.053 0.053 0.027 0.027 8.883 8.883 8.883
total sample aliquot count #individuals volume (mi) factor counted (mi)	-000007-80046002-008-04-	0.02225882788000222800084200702028	
count factor			$ \begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
aliquot (ml)	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	23 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0	90000000000000000000000000000000000000
total sample volume (ml)	200 200 200 200 200 200 200 200 200 200	255 255 255 255 255 255 255 255 255 255	88888888888
tow volume filtered (L)	01.871 01.8710000000000000000000000000000000000	1374.45 13774.45 1477	01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711
net radius (cm)	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	******
tow (m)		022 022 022 022 022 022 022 022 022 022	000 000 000 000 000 000 000 000
division	Cladocera Cladocera Ostrocala Ostrocala Copepoda Copepoda Copepoda Copepoda Rothera Ro	Cladocerea Cladocerea Cladocerea Cladocerea Cladocerea Ostracoda Ostracoda Coppeboda Rotifera	Cladocera Cladocera Cladocera Cladocera Ostracoda Ostracoda Copepoda Copepoda Rotifera
species	sp. brachyurum copepolid copepolid prasinus spp. unicomis spp. cochlearis cochlearis cochlearis sterroosi sterroosi vugans sterroosi sterroosi vugans sterroosi sterroosi vugans	Spp. Iongirostnis Spp. Spp. Spp. Spp. angularis angularis angularis spp. Insvanensis spp. Insvanensis spp. bula spp. puularis spp. vuigaris spp. vuigaris spp. vuigaris spp.	longirostris sphaericus spp. copepodid copepodid angularis
snueb	Certodaphnia Department Ilyvorytus calanoid Tropocyclops Tropocyclops Tropocyclops Tropocyclops Tropocyclops Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Brachinorus Ferundaria Testudinala Testudinala Testudinala Testudinala Testudinala	Alona Blona Ilycorybus Monocybuls Monocybuls Monocybuls Morocybuls Morocybuls Morocybuls Morocybuls Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Playia	Bosmina Chydonus Dtaphanosoma Simocephalus ostracod calanoid royclopoid naupli Brachionus
notes	Нур аеглиз Нур аеглиз	High algae and derthus, High algae and derthus,	High demtus High demtus High demtus High demtus High demtus High demtus High demtus High demtus
time	15:02 (5:50) (5:	© ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	907 907 907 907 708 707 907 907
date	10.58p.2019 10.58p	H. 5ap. 2019 11.	11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019
container ID	190410078.C 190910078.C 1909100778.C 190778.C 190910778.C 190910778.C 190778.C 190778.C 190910778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 190778.C 1	1909110057.0 1905110057.0 190511057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 1905110057.0 190511057.00	1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6 1303110071-6
site			SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19 SFM4 19
15		***********************	ង់

species biomass (Jug d.w./L)	0.009 0.006 0.018 0.001 0.000	0.003 0.003 0.003 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0040 0.00400 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.00400000000	0.007 0.011 0.011 0.006 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.007 0.006 0.011 0.006 0.011 0.006 0.007 0.0000 0.007 0.0000 0.007 0.000000
biomass factor	0.008 0.006 0.115 0.022 0.015 0.015	0.355 0.550 0.304 0.001 0.048 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.0023	0.434 0.319 0.8601 0.8601 0.015 0.0035 0.023 0.0135 0.023 0.0133 0.0103 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0135 0.0135 0.0135 0.01550 0.01550 0.00550 0.00550 0.00550 0.005500000000	0.486 0.698 0.370 0.370 0.020 0.021 0.023 0.021 0.022 0.017 0.022 0.017 0.022
¶//	1.064 0.931 0.160 0.053 0.027 0.027	$\begin{array}{c} 0.005\\ 0.005\\ 0.106\\ 0.105\\ 0.005\\ 0.014\\ 0.014\\ 0.005\\ 0.$	$\begin{array}{c} 0.005\\ 0.014\\ 0.005\\ 0.006\\ 0.006\\ 0.006\\ 0.006\\ 0.000\\ 0.$	0.015 0.015 0.015 0.015 0.031 0.031 0.031 0.031 0.031 0.031 0.031
total sample aliquot count #individuals volume (mi) factor counted (mi)	2635	0-60-50606060	-๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	a-2a\$\$\$aa-aa
count #i	0.03 0.03 0.03 0.03 0.03	888888888888888888888888888888888888888		0.0000000000000000000000000000000000000
(ml) f	30 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{smallmatrix} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $		10000000000000000000000000000000000000
total sample volume (m)	2222222	265 265 265 265 265 265 265 265 265 265	3358 3358 3358 3358 3358 3358 3358 3358	265 265 265 265 265 265 265 265 265 265
tow s volume v filtered (L)	1178.10 1178.10 1178.10 1178.10 1178.10 1178.10	01.8711 01.87110 01.87110 01.87110 01.87110 01.8711000000000000000000000000000000000	1570 80 1570 80 1500 8	1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80
net radius (cm) fi	32 32 32 32 32 32 32 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**********
tow length n (m)	0.0000000000000000000000000000000000000	©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000
division 1	Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Cladocera Copetoda Copepoda Rotifera R	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Rotri	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera
species	unicornis cochiearis tropica vulgaris spp. bicristata	brachyurum spp. copepodd coperodd spp. angularis angularis cochlearis cochlearis cochlearis cochlearis cochlearis cochlearis cochlearis cochlearis spp. vulger vulger veliger	guitala poingroctris sp. of contraction productions sp. of contraction sp. of contraction	excisa sp. norganization sp. and and construction entroutidatus copepodid copepodid caudatus favanaterisis sp.p.
genus	Conochilus Kerztella Kerztella Polyarthra Sinantherina Trichocerca	Diaphanosoma Simocephalus cyclopoid aparticid narparticid narpiti Rearcela Kearcela Kearcela Kearcela Kearcela Kearcela Kearcela Kearcela Simantherma Simantherma	Alona Alona Certodaphinal Certodaphinal Dipphanosoma Dipphanosoma Simorephalus Simorephalus Simorephalus Simorephalus Simorephalis Reachionis Euchinanis Reaction Kearetela Kear	Aloneila Basmina Cenodaphina Cenodaphina Nyoonypus Pieurouxus ostracod ostracod calanoid calanoid navpii bodeloid Brachonus Elechinans Rechonus Elechinans Kelicotha
notes	High demtus. High demtus. High demtus. High demtus. High demtus. High demtus.	High defmus. Unable to meet taily High defmus. Unable to meet taily High defmus unable to meet taily	High definits. Unracte to meet taily High definits. Unacte to meet taily	High defruits. Unable to meet taily, High defruits. Unable to meet taily,
time	907 907 907 907 907	0013 0013 0013 0013 0013 0013 0013 0013	000 000 000 000 000 000 000 000	1005 1005 1005 1005 1005 1005 1005 1005
date	11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019	11.58p.2019 11.58p	11.5ep.2019 11.5ep.2019	11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019 11.56p.2019
container ID	1909110071-G 11 1909110071-G 11 1909110071-G 11 1909110071-G 11 1909110071-G 11	13091102.0 11 13091102.4 11 13091102.4 11 13091102.5 11 13	1909110065 5 100110065 5 100110065 5 100110065 5 100110065 5 100110065 5 100110065 5 100110065 5 1000110065 5 1000110065 5 1000110065 5 1000110065 5 1000110065 5 10005 5 1000	(30911073 E 11 30911073 E 11 3
site	SFM4 SFM4 SFM4 SFM4 SFM4 SFM4 SFM4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NFM3 1 NFM3 1 NF	NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3

species biomass (Jug d.w./L)	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.033 0.037 0.004 0.0016 0.0016 0.0016 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.000100000000	0.018 0.242 0.242 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.012 0.019 0.029 0.107 0.107 0.000 0.000 0.000 0.000
biomass factor	0.009 0.009 0.035 0.036 0.031 0.036 0.036 0.036	0.558 0.255 0.255 0.255 0.256 0.256 0.256 0.256 0.256 0.028 0.028 0.014 0.003 0.00140000000000	$\begin{array}{c} 0.511\\ 0.538\\ 0.056\\ 0.010\\ 0.010\\ 0.011\\ 0.011\\ 0.011\\ 0.052\\ 0.052\\ 0.052\\ 0.011\\ 0.011\\ 0.0125\\ 0.011\\ 0.012\\ 0.011\\ 0.012\\ 0.012\\ 0.011\\ 0.012\\ 0.002\\ 0$	0.535 0.500 1.283 0.024 0.024 0.024 0.024 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0218
1 <i>1#</i>	0.061 0.077 0.092 0.015 0.015 0.015 0.015 0.322	0.055 0.014 0.0070 0.0070 0.0070 0.0074 0.0074 0.0074 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0072 0.0072 0.0076 0.00	0.036 0.289 0.289 0.036 0.036 0.036 0.036 0.072 0.072 0.072 0.072 0.072 0.036	0.022 0.022 0.022 0.067 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022
total sample aliquot count #individuals volume (ml) factor counted (ml)	4500707777	4 - w 4 w 0 w 2 - 4 4 - w 2 w 0 2 4 0 - 0 w 2 - 0 4	- ∞ 8 5 0 - 0 - 0 2 - 5	
count #	0.02 0.02 0.02 0.02 0.02 0.02	000000000000000000000000000000000000000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	000000000000000000000000000000000000000
aliquot (ml) 1		000000000000000000000000000000000000000		100 100 100 100 100 100 100 100 100 100
	265 265 265 265 265 265 265 265 265 265	***************************************	255 255 255 255 255 255 255 255 255 255	265 265 265 265 265 265 265 265 265 265
tow volume filtered (L)	1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80 1570.80	01 8211 01 82111 01 8211 01 82110 01 82110 01 8211000000000000000000000000000000000	1178.10 178.10 178.10 1778.100	01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711 01.8711
net radius (cm)	*******	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	******	*******
tow (m)	0.8 0.8 0.0 0.8 0.0 0.8 0.0 0.0 0.0 0.0			0 0 0 0 0 0 0 0 0 0
division	Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Cladocera Copepoda Copepoda Copepoda Copepoda Copepoda Rotifera R	Cladocera Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Cladocera Cladocera Ostracoda Ostracoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera
se				
species	Si a a	did bits brus brus fis fis fis fis fis fis fis fis fis fi	urum did si si filata	stris orus ta aris
	cochleans crassa earlinae patulus vulgaris spp. tetractis veliger	longirostris spp. copepodid forbesi spp. angularis spp. spp. virgesia conficients spp. virgens spp. virgens spp. virgens spp. virgens	brachyurum copepodid unicomis spp. cochiearis crossa lenzi lenzi lenzi bula stenrosi vulgans sembullata spp. vulgans	Iongirostris sp. spp. copepodid calyciflorus unicomis spp. longiseta mira cochlearis
genus		Bosmina Bosmina sustración contrologicomus sustración calanold calanold Perulonus Brachionus Brachionus Brachionus Brachionus Brachionus Conochildes Conochildes Conochildes Filmia Perdonus Proyentia Tirchorelia Tirchonella Tirchonella Tirchonella Tirchonella Tirchonella Tirchonella Filmia	s s s som a s s som a s s som a s s s s s s s s s s s s s s s s s s	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
eb	Keratella Keratella Keratella Flationus Polyarthra Polyarthra Synchaeta Testudinella Trichotria BivaMia	Bostmina Nycotypus olycotypus calanoid Pseudodatton Pseudodatton Pseudodatton Bachiouna Bachiouna Bachiona Bach	Daphanosoma ovclopoid corophilis Conochilus Conochilus Keratella Keratella Keratella Keratella Keratella Keratella Sinantherina Polyantheria Sinantherina Sinantherina	Bosmina Ceriodaphnia Ceriodaphnia Pleuroxus ostracod cyclopoid nauplii Brachionus Conocchilus Euchlanis Filinia Keratelia Keratelia
	ttaly. ttaly. ttaly. ttaly. ttaly. ttaly. ttaly.		ttaly, ttaly, ttaly, ttaly, ttaly, ttaly, ttaly, ttaly, ttaly, ttaly,	1 1 1 1 1 1 1 1 1 1 1 1 1 1
10	derifus. Unable to meet taily defitus. Unable to meet taily		 e to mee 	dertrus. Unacite to meet taily dertrus. Unacite to meet taily
notes	us. Unab us. Unab us. Unab us. Unab us. Unab us. Unab us. Unab us. Unab us. Unab		2012 2012 2012 2012 2012 2012 2012 2012	42 Character (Character (Characte
	High defines Unable to meet rat High defines Unable to meet rat		High defints. Unable to meet ta high defints. Unable to meet ta	High derfuus. Unable to High derfuus. Unable to

time	10.05 10.05 10.05 10.05 10.05 10.05	80000 800000 800000 8000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000
2	11-Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11 11.Sep-2019 11	11.58p.2019 11.58p	11.58p.2019 11.59p.2019 11.59p.2019 11.59p.2019 11.59p	11-Sep-2019 1 11.Sep-2019 1
date	11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser 11-Ser		11.5er 11	11-Set 11
container ID	1909110073.E 1909110073.E 1909110073.E 1909110073.E 1909110073.E 1909110073.E 1909110073.E 1909110073.E 1909110073.E	1309110070.6 1309110070.6 1309110070.6 130010070.6 130010070.6 130010000.6 130000000.6 13000000000000000000000000000000000000	1309110061-6 13001061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 130010061-6 13000000000000000000000000000000000000	1303110060 G 1303110060 G 1303100000 G 1303100000 G 13030000000000000000000000000000000000
site	NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3	SFM3 SFM3 SFM3 SFM3 SFM3 SFM3 SFM3 SFM3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88888888888888888888888888888888888888

ies ass AL)	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30100000000000000000000000000000000000	1922 2020 2020 2020 2020 2020 2020 2020	29 27 20 20 20 20 20 20 20 20 20 20 20 20 20
species ss biomass (Jug d.w./L)	0.001	0000 01125 00000 00019 00019 00019 00019 00019 00000 00000 00000 00000 00000 00000 0000	00116 00120 00120 00120 00120 00120 00120 00000 00000 00000 00000 00000 00000 0000	0.001 0.0076 0.008 0.001 0.006 0.000
biomass factor	0.005 0.0144 0.022 0.004 0.106	0.271 0.002 0.002 0.003 0.033 0.057 0.057 0.005 00000000	0.434 0.4357 0.357 0.172 0.172 0.3571 0.3571 0.357 0.032 0.033 0.033 0.013 0.023 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.035 0.0000 0.035 0.0000 0.035 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.543 0.004 0.465 0.051 0.024 0.024 0.024 0.028
#//	0.045 0.045 0.270 0.090 0.112	0.018 0.175 0.175 0.123 0.018 0.018 0.018 0.018 0.035 0.005 0.0350000000000	0.037 0.037 0.037 0.037 0.0387 0.0387 0.039 0.039 0.148 0.142 0.142 0.142 0.142 0.019 0.0000 0.019 0.0000000000	0.054 0.036 0.018 0.018 0.018 0.054 0.018 0.018
aliquot count #individuals (ml) factor counted	0 0 1 7 7 9 10	イ 4 ひ イ イ 4 イ ら イ 2 イ 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	นตยะยะกะธุฐิตะ - 45× - ยยะ 48× - ยยะ	то с <u>С</u> то
count # factor	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	00000000000000000000000000000000000000	888888888888888888888888888888888888888	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
aliquot (ml)	10.0 10.0 10.0 10.0		$\begin{smallmatrix} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $	220222022
total sample volume (ml)	265 265 265 265 265	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 22 22 22 22 22 22 22 22 22 22 22 22	255 255 255 255 255 255 255 255 255 255
tow volume filtered (L)	1178.10 1178.10 1178.10 1178.10 1178.10	1178.10 1178.1	981.75 98	1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10
net radius (cm)	25 25 25	********************	*************************	888888888 8
tow length ne (m)	6.0 6.0 6.0	000000000000000000000000000000000000000		00000000000000000000000000000000000000
division I	Rotifera Rotifera Rotifera Bivalvia	Cladocera Cladocera Cladocera Copenda Copepoda Copepoda Copepoda Copepoda Roufiera R	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Rotriera Rotr	Cladocera Ostracoda Copepoda Copepoda Rotifera Rotifera Rotifera
species	earlinae spp. vulgans spp. veliger	brachyunum spp. copepodid copepodid spp. angularis angularis angularis quardion quardion contilearis c	guttata spp. iongirostnis spp. bradvarencus bradvarencus latissima copepodid copepodid copepodid copeanis dossuarius dossuarius spp. crosse dossuarius spp. crosse dossuarius spp. crosse annicomis spp. crosse spp. veliger veliger	guttata vernalis copepodid angularis caudaus
snueb	Keratella Lecane Polyarthra Synchaeta Bivatvia	Diaphanosoma by corputs ostracod colonid cyclopoid anupracticoid auguit preparation Brachionus Brac	Alona Semina Cerodashnia Cerodashnia Cerodashnia Cerodashnia Kurza Stracod calanoid Bachoid Bachoid Bachoid Bachoid Bachoid Bachoid Recebla Kerzell	Alona ostracod Acanthocyclops cyclopoid naupli bdelloid Brachionus Brachionus
notes	High deriturs. Unable to meet rally. High deriturs. Unable to meet rally.	High dertrus. Unable to meet taily. High dertrus. Unable to meet taily.	High algae and bertrus. Unable to meet taily High algae and bertrus. Unable to meet taily	High deartus and sit. Unable to meet taly, High deartus and sit. Unable to meet taly,
time	11100 11100 1100	11111111111111111111111111111111111111		1152 1152 1152 1152 1152 1152 1152
date	11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019	11.5ap.2019 11.5ap.2019	Sap.2019 Sap	11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019
container ID	1909110060.G 11 1909110060.G 11 1909110060.G 11 1909110060.G 11 1909110060.C 11	1303110065 6 11 1303110065 6 11 130311005 6 11 130511005 6 11 130511005 6 11 130511005 6 11 130511005 6 11 130511005 6 11005001000000000000000000	1909110084 0 11 1909110084 0 11 190910084 0 11 1909100084 0 11 1909100084 0 11 1909100084 0 11 190910000084 0 10	1909110059.6 11 1909110059.6 11 1909110059.6 11 1909110059.6 11 1909110059.6 11 1909110059.6 11 1909110059.6 11 1909110059.6 11
aite	888888 888888 8888888	NFW2 NFW2 NFW2 NFW2 NFW2 NFW2 NFW2 NFW2	SFM2 SFM2 SFM2 SFM2 SFM2 SFM2 SFM2 SFM2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1			
species biomass (µg d.w./L)	0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0000 0015 0000 00000 00000 00000 00000 00000 0000	
biomass factor	0.024 0.016 0.002 0.023 0.023 0.028 0.028 0.387	0.301 0.227 0.0008 0.0008 0.0008 0.0008 0.0009 0.0167 0.0167 0.0014 0.0004 0.00004 0.00004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 00	
1 <i>/#</i>	0.036 0.018 0.018 0.018 0.018 0.018 0.018 0.253	0018 0037 0037 0037 0038 0039 0039 0039 0039 0039 0038 0038	
total sample aliquot count #individuals volume (ml) factor counted (ml)	0 - <u>6</u> <u>6</u> 0 <u>5</u>	ะสะทะธือตธุ็สะะะธะสุทะะะะะุณะเพิ่าตะต่อยังเริ่งเป็นเปลือนี้สุมเกลื่านสู่เราะเกตะ	
count # factor	0.02	888888888888888888888888888888888888888	
(ml)	2200000000000000000000000000000000000	88888888888888888888888888888888888888	
total sample volume (ml)	255 255 255 255 255 255 255 255 255 255	82 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
tow volume filtered (L)	01,8711 01,8710 01,8710 01,8710 01,8710 01,8710 01,8711 01,8711 01,8711 01,8711 01,8711 01,8711	1570 80 1570 8	
net radius (cm) f	******	<u>รุรุรุรุรุธธุรุธธุรุธธุรุธธุรุรุรุรุรุร</u>	
tow (m)	00000000000000000000000000000000000000	©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	
division	Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Copendera Routi	
species	tecta		
đ	spp. stylifer cochleans var. tecta tropica quadricomis vulgaris spp. veliger	spp. spp. spp. spp. spp. copepodid copepodid copepodid copepodid coperatinae unicomis cortiearis cortinaris contina spp. vulgaris patutus patutos patu	C.
snueb	Collotheca Gastropus Keratella Keratella Keratella Playias Polyarthra Synchaeta Bivahia	Alonia Basimia Chydours Merotyplus Merotyplus Merotyplus Merotyplus Merotyplus Perotionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachia Brac	
notes	High derictus and sit. Unable to meet tally High dericus and sit. Unable to meet tally	High algae and dertruss High dertrus and sit. Unable to meet tally High dertrus and sit. Unable to meet tally H	
time	11152 11152 11152 11152 11152 11152 11152	22222222222222222222222222222222222222	
date	11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019 11-Sep-2019	H156P, 2019 H156P, 2019 H156P	
container ID	1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11 1909110059-6 11	999110084 5 11 3003110084 5 11	
site	ତ ତ ତ ତ ତ ତ ତ ତ ତ ତ ର ର ର ର ର ର ର ତ ତ ତ	MANNANANANANANANANANANANANANANANANANANA	

species biomass (µg d.w./L)	0.010 0.010 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.008 0.007 0.007 0.007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.019 0.001 0.000 0.012 0.012
0				
	6 0.397 3 1.329 9 0.838 9 0.838 6 0.002 5 0.007 5 0.007 6 0.005 6 0.005 3 0.012 3 0.012 0 0.00 0 000 0 0.000 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.000 0 0 0.0000 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0 0.0000 0 0.00000 0 0.0000 0 0.00000 0 0.00000 0 0.000000 0 0.000000 0 0.00000000	0 0.337 9 0.1727 9 0.1727 9 0.0549 9 0.0018 9 0.0018 9 0.0018 9 0.0018 7 0.003 7 0.013 7 0.015 7 0.015 0 000000000000000000000	3 0.192 3 1.327 3 1.327 4 0.004 4 0.004 5 0.1242 5 0.1242 9 0.008 9 0.028 9	8 0.330 5 0.266 1 0.006 1 1.108 0 1.108
1/# s	0.026 0.013 0.0000000000	0.020 0.034 0.078 0.078 0.078 0.078 0.078 0.026 0.039 0.059 0.059 0.059 0.020	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	0.058 0.005 0.021 0.021 0.010
total sample aliquot count #individuals volume (ml) factor counted (ml)	0 ∞ μ ω ∞ + ∞ μ − - ∞ μ −	- 0 2 4 2 - 5 - 5 0 x x 2 + 5 - 5 - 5 0 x x 2 + 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	ωω-ωξ <u>9</u> - <u>8</u> -400 <i>レ</i> ν0000400-ν0	5-440
count factor		$\begin{smallmatrix} 0.02\\ 0.$		0.01 0.01 0.01 0.01
aliquot (ml)	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	$\begin{smallmatrix} & 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	333 0 333 0 33 330 0 330 0 300 0 00000000	43.0 43.0 43.0 43.0 43.0 43.0
	270 270 270 270 270 270 270 270 270 270	888888888888888888		265 265 265 265 265 265
tow volume filtered (L)	137445 17	01.8711 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.87110 01.8711000000000000000000000000000000000	1472.63 1472.6	1178.10 1178.10 1178.10 1178.10 1178.10
net radius (cm)	***********	************	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	333333
tow (m)	077 077 077 077 077 077 077 077 077 077	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	755 7755 7755 7755 7755 7755 7755 7755	0.0 0.0 0.0
division	Cladocera Ostracodra Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera	Cladocera Cladocera Cladocera Cladocera Cladocera Copepoda Copepoda Copepoda Rotifer	Cladocera Cladocera Cladocera Ostracoda Copepoda
species	longriostris copepodid copepodid copepodid approventia spp. vulgaris spp.	longinostris brachywum brachywum copepodd copepodd copepodd spp. cochaaris c	longinostris sp. sp. sp. copepoid thomasi sp. anguaris sp. sp. anguaris sp. unguaris unguaris unguaris sp. vulgaris sp.	longirostris sp. copepodid
snueb	Bosmin a cettacod cettacod cyclopoid bdaloid bdaloid bdaloid Kerzella Kerze	Bosmina Bosmina calandid calandid colonochilds Conochilds Conochilds Filma Keraelia	Bosmina Bosmina Daphanosoma Daphanosoma ostraocid ostraocid ostraocid ostraocid Decinionus Brachionus Brachionus Brachionus Brachionus Brachionus Recatella Keratella	Bosmina Ceriodaphnia Ilyocryptus ostracod calanoid
notes	High dertrus. Unadie to meet taly, High dertrus. Unadie to meet taly,	High definus, High definus,	High definus, High definus,	80 0 0 0 8 0 0 0 0 9 0 0 0
time		1258 1258 1258 1258 1258 1258 1258 1258	x x x x x x x x x x x x x x x x x x x	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
date	11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019 11-58p-2019	11.58p.2019 11.58p	9102-982 9102-9	12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019
100	00000000000000000000000000000000000000	00000000000000000000000000000000000000		G 12-S G 12-S G 12-S G 12-S G 12-S
container ID	1009110083.6 1909110083.6	1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6 1909110072.6	1909 120040 G 1909 120040 G 1900 120040 G 19	1909120035-6 1909120035-6 1909120035-6 1909120035-6 1909120035-6
site	SSSREM AND	MAKEN AN	NFW 1000000000000000000000000000000000000	222222
	លលលលលលលលាលបាលបាល បាល បាល បាល បាល បាល បាល	××××××××××××××××××××××××××××××××××××××	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

species biomass (µg d.w./L)	0.112 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	0.014 0.033 0.013 0.013 0.013 0.011 0.011 0.011 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003
sp biomass bio factor (0549 00772 00772 00165 00165 00165 00044 00044 00004 00064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000064 000065 000064 000065 00005 000000	1 1446 0 370 0 333 0 465 0 333 0 405 0 0 145 0 0 145 0 0 001 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 0 000 0 0000 0 00000 0 000000 0 00000000	0.125 0.142 0.142 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.034 0.034 0.034 0.00240000000000
als #/L	0.131 1.569 0.005 0.005 0.005 0.005 0.005 0.016 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.005 00000000	0.025 0.005 0.005 0.005 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.0050	0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.229 0.344 0.115 0.344 0.115 0.344 0.115 0.229 0.229
total sample aliquot count #individuals volume (mi) factor counted (mi)	8.08 2	ww-44804-5856w-	-00-80480-20-2-00
liquot count # (ml) factor	00000000000000000000000000000000000000	888888888888888888888888888888888888888	
aliquot (ml)	$\begin{smallmatrix} 4&3&3\\4&3&3&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0\\4&3&3&0&0&0&0\\4&3&3&0&0&0&0\\4&3&3&0&0&0&0\\4&3&3&0&0&0&0\\4&3&3&0&0&0&0\\4&3&3&0&0&0&0&0\\4&3&3&0&0&0&0&0\\4&3&3&0&0&0&0&0\\4&3&3&0&0&0&0&0&0\\4&3&3&0&0&0&0&0\\4&3&3&0&0&0&0&0&0\\4&3&3&0&0&0&0&0&0&0\\4&3&3&$	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	220020000
total sample volume (ml)	265 265 265 265 265 265 265 265 265 265	0211 0211 0211 0211 0211 0211 0211 0211	270 270 270 270 270 270 270 270 270 270
tow volume filtered (L)	01 8211 01 82110 01 82110 01 8211000000000000000000000000000000000	1374.45 1377.45 1377.4	01.8711 01.87110 01.87110 01.87110 01.87110 01.87110 01.8711000000000000000000000000000000000
net radius (cm)	****************	***********************	\$
tow length (m)	666666666666666666666666666666666666666	022 022 022 022 022 022 022 022 022 022	© © © © © © © © © © © © © © © © © © ©
division	Copepoda Copepoda Rotriera Rot	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Roth	Cladocera Cladocera Cladocera Octobencera Cladocera Cladocera Rotri Rotriera Rotrier
species	copepodid angularis angularis quadrians quadridentis sportos eerinae erinae erinae erinae erinae erinae erinae erinae erinae erinae erinae erinae erinae erinae erinae sportomis	longirostris sphericus brachynum coopepodid coopepodid spp. unicomis spp. ungulata bulla vugans vugans vugans vugans	guttada spingenostnis spingenostnis spip. spip. spip. unicomis spip. costala lenzia cumvicornis spip.
Senus	cyclopoid auplii bdaloid Brachrionus Brachrionus Brachrionus Filmai Kerzelia Kerzeli	Bosmina Bosmina Crydony Crydony Crydono ostrazod Sechina S Restrina Restrin	Alona Bosmina Chydons Chydons Chydons otrocrydus otrochanis Asplatini Asplatini Asplatini Asplatini Kerzella Kerzella Kerzella Kerzella Kerzella Lecane Lecane
notes		High algee and derflux. High algee and derfluxs. High algee and derfluxs.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
time		1003 1003 1003 1003 1003 1003 1003 1003	1003 1003 1003 1003 1003 1003 1003 1003
date	12-58p.2019 12-58p	12-56p.2019 12-56p	12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019 12-56p.2019
₽	42222222222222222222222222222222222222	20044 6 12 20044 6 12 20046 6 12 20044 6 120	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
container	1909120035.6 190912005.6 190912005.6 190005.6 190005	1909120044 G 1909120044 G	1909120046.E 19091
site	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SFM4 15 SFM4 1	SFM4 SFM4 SFM4 SFM4 SFM4 SFM4 SFM4 SFM4

	Sacramento River Nutrient Change Study – Final Report									
species biomass (µg d.w./L)	0.004 0.006 0.015 0.004 0.003 0.014	0002 0007 0007 0000 00003 00003 00005 00005 00000 00000 00000 00000 00000 00000 0000	0011 0010 0000 0000 0005 0005 0005 0005							
biomass factor	0.036 0.052 0.130 0.030 0.035 0.022 0.022	0.147 0.147 0.147 0.168 0.168 0.168 0.168 0.108 0.108 0.108 0.108 0.000 0.108 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.958 0.0248 0.0033 0.0033 0.0033 0.0034 0.0034 0.0034 0.0012 0.0012 0.0012 0.0012 0.0014 0.0014 0.0014 0.0014 0.00210000000000							
<i>#</i> //	0.115 0.115 0.115 0.115 0.115 0.115	0013 0013 0013 0013 0013 0013 0013 0013	0012 0012 0012 0012 0012 0012 0012 0012							
findividuals counted	r r r ω r r r	- クイイクのするだてので、しょうのかってのするでの。	トートスタの他とも読みとりのトームトームタートスのですよう							

#	0000000	888888888888888888888888888888888888888	66666666666666666666666
total sample aliquot count #individuals volume (ml) factor counted (ml)	~~~@~~~	000409-520-800000-080008	-2 ² / ₈ 40000000-
count a	0.1111110000000000000000000000000000000		
aliquot (ml)	20 20 20 20 20 20 20 20 20	38:00 38:000	0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0
	270 270 270 270 270 270 270		$\begin{array}{c} 1\\ 1\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$
tow volume filtered (L)	1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10	1178 10 1778 1	1570 80 1570 80 1500 8
net radius (cm)	R R R R R R R	<u>รรรมสมสมสมสมสมสมสมสมสมสมสมสมสมสมส</u> มสมสมสมส	******************
tow (m)	000 000 000 000 000		
division	Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Cladocera Cladocera Cladocera Cladocera Cladocera Copepoda Copepoda Copepoda Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Rothera Cladocera Clado	Copepoda Copepoda Copepoda Copepoda Routiera Rou
species	bulla patulus vulgaris spc. bicristata veliger	spp. Iongliosatris spp. dispar dispar copepodid spp. copepodid spp. bula bula curvicomis spp. continents bula bula bula bula curvicomis spp. continents spp. vilger peturum veliger spp. dispar dispar dispar	copepodid copepodid angularis spp. havanasis spp. contearis spp. contearis spp. contearis spp. spp. spp. spp. spp. spp.
Genus	Monostyla Platonus Ploesoma Polyatthra Testudnella Trichocerca Bivalvia	Alona Bessmina Cendodymia Ilyocrypus Monosphus cetatooid cyclopoid cyclopoid cyclopoid cyclopoid cyclopoid cyclopoid cyclopoid cyclopoid cyclopoid bedeloid Reatella Keatella	y clainoid cyclopoid buolioid buolioid Brachonus Brachonus Brachonus Brachonus Brachonus Hexathra Keatella Keatella Keatella Keatella Keatella Reacha
notes	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	High algae and demits. High algae and demits.	
date time	12.Sep.2019 10:03 12.Sep.2019 10:03 12.Sep.2019 10:03 12.Sep.2019 10:03 12.Sep.2019 10:03 12.Sep.2019 10:03 12.Sep.2019 10:03	12.5ap.2019 1005 12.5ap.2019 1005	12.589-2019 1005 12.589-2019 1005
container ID	1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10 1909120046.E 12-58-2019 10	1909/20034.5 1909/	1909 12003 6 1909 120034 6 1909 120034 6 1909 120034 6 1999 120034 6 1990 120004 6 1990 120004 6 190
site	SFM4 SFM4 SFM4 SFM4 SFM4 SFM4 SFM4		NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3 NFM3

species biomass (µg d.w./L)	0.006	$\begin{array}{c} 0.008\\ 0.012\\ 0.112\\ 0.131\\ 0.000\\ 0.$	$\begin{array}{c} 0.007\\ 0.007\\ 0.007\\ 0.006\\ 0.006\\ 0.006\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.000\\ 0.$	$\begin{array}{c} 0.001\\ 0.010\\ 0.056\\ 0.020\\ 0.022\\ 0.022\\ 0.002\\ 0.002\\ 0.000\\ 0.$
biomass factor	0.060	$\begin{array}{c} 0.434\\ 0.341\\ 0.0633\\ 0.0688\\ 0.077\\ 0.0068\\ 0.0723\\ 0.0012\\ 0.0073\\ 0.0073\\ 0.0073\\ 0.0073\\ 0.0063\\ 0.$	0.172 0.250 0.250 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.319 0.310 0.319 0.310 0.310 0.031 0.0035 0.0	0.230 0.889 0.121 0.121 0.124 0.092 0.092 0.013 0.013 0.013 0.013
1 <i>1#</i>	0.106	0.018 0.035 2.617 0.018 0.018 0.018 0.018 0.035 0.0000000000	0.041 0.014 0.014 0.0146 0.0146 0.0146 0.0146 0.0141 0.0014 0.0141 0.0014 0.00014 0.0014 0.0000000000	0.006 0.017 0.017 0.017 0.017 0.017 0.017 0.006 0.006 0.006 0.006
total sample aliquot count #individuals volume (ml) factor counted (ml)	6	ーのわ惑ーーの11%の8010118418ト	wurrrur@rrgvrwuruwwwururrt	-0001=4600-
count # factor	0.01	000000000000000000000000000000000000000		0.0000000000000000000000000000000000000
aliquot (ml)	7.0	1300 1300 1300 1300 1300 1300 1300 1300		4410 4410 4410 4410 4410 4410 4410 4410
total sample volume (ml)	130	270 270 270 270 270 270 270 270 270 270	225 225 225 225 225 225 225 225 225 225	275 275 275 275 275 275 275 275 275 275
tow volume filtered (L)	1570.80	1178.10 1178.1	2001 68 2001 6	1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10 1178.10
net radius (cm)	25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<i>%</i>	************
tow (m)	8.0		10000000000000000000000000000000000000	00000000000000000000000000000000000000
division	Bivalvia	Cladocera Ostracoda Ostracoda Copepoda Routiera	Cladocera Cladocera Cladocera Cladocera Cladocera Copepoda Copepoda Copepoda Rothera R	Cladocera Cladocera Cladocera Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera
sbecies	veliger	guttata copepodid bidentata uquadridentatus f trevispinus unicomis spp. contierata contierata contierata contierata contierata contierata spp. pedulus spp. pedulus spp. pedulus spp. vulgars spp. vulgars veliger	guittata Jonginostris Jonginostris dispart dispart spp. copepodid copepodid spp. angularis angularis sp. contearis	guitada bradivostris bradivurum vemalis copepodid angularis edivicitiorus edivicitiorus spp.
Snue	Bivahia	Atona ostracció ostracció ostracció ostracció presenta Brachionus Brachionus Conochius Filma Kercella	Alonna Bosminaa Kurzta Kurzta Kurzta Simocepiluus Simocepiluus Simocepiluus Calanoid Eucyclops Sistodoppomus Ascomorphia Ascomorphia Rescholuus Brachionus Brachionus Brachionus Brachionus Rescatalla Keeratalla Keeratalla Keeratalla Testudheita Testudheita Testudheita Testudheita Brazhion	Alona Bosmina Daphanosoma Daphanosoma Nachrobus Acambous Acambous Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus Brachionus
notes	ma	High deftuls. Unstale to meet tafly High deftuls. Unstale to meet tafly	High algae and derthus. Unshie to meet taly, High algae and derthus. Unshie to meet taly, High algae and derthus. Unable to meet taly.	High deftuls. Unable to meet tally High deftuls. Unable to meet tally
time	10:05	10.55 10.55		$\begin{array}{c} 11130\\ 11100\\ 11000\\ 11000\\ 11000\\ 11$
date	12-Sep-2019	12.549,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559,2019 12.559	12.589.2019 (2.589.2019) (2.589	12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019
container ID	1909120039-G 1	1909120033-6 190912003-6 1909120003-6 1900000000000000000000000000000000	1909120038 C 1909220038 C 19092	1909120032.6 1 1909120032.6 1 1900120032.6 1 100002003003.6 1 100000000000000000000000000000000000
site	NFM3 1		NFM2 NFM2 NFM2 NFM2 NFM2 NFM2 NFM2 NFM2	S S S S S S S S S S S S S S S S S S S

ം ഗുപ്പ		
species biomass (Jug d.w./L)	0000 0000 0000 0000 0000 0000 0000 0000 0000	
biomass factor	0.004 0.004 0.004 0.0052 0.052 0.052 0.052 0.052 0.052 0.018 0.028 0.028 0.028 0.028 0.028 0.028	0.543 0.234 0.234 0.234 0.035 0.
1/#	$\begin{array}{c} 0.006\\ 0.006\\ 0.012\\ 0.011\\ 0.011\\ 0.011\\ 0.011\\ 0.011\\ 0.011\\ 0.011\\ 0.010\\ 0.012\\ 0.010\\ 0.011\\ 0.006\\ 0.011\\ 0.006\\ 0.010\\ 0.000\\ 0.$	0007 007 007 008 0014 0008 0014 0004 0007 0007 0007 0007 0007 0007
#individuals counted	- ⁶ - 4 0 6 - 0 0 - <u>6</u> 0 0 - N	+4204 ⁸² =608620050500208-02550400 006-5-ธิด-004-
total sample aliquot count #individuals volume (mi) factor counted (mi)	4440 000 000 000 000 000 000 000 000 00	
total ample al olume	275 275 275 275 275 275 275 275 275 275	250,55,55,55,55,55,55,55,55,55,88,88,88,88,
tow se volume vo	01 8211 01 8211	1178 10 1178 1
net radius (cm)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
tow (m)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
division	Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera Rottfera	Cledocerta Cledocerta Cledocerta Cledocerta Cledocerta Copepoda Copepoda Copepoda Copepoda Rotifera Ro
species	bostoniensis cochlearis var. tecta cochlearis var. tecta cassa earlina e anna e papuaria spi ulgaris sucta sucta sucta sucta veliger	spp. brachyuruum coopeooid coopeooid coopeooid spp. angulars angulars angulars spp. contreams cochearis percolius spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. comuta spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp. venails spp.
snueb	Kellicottia Keetella Keetella Keetella Keetella Keetella Lecene Lecene Lecene Playvas Playvas Playvas Playvas Playvas Playvas Rovatka Bronkos Keetella Rovatka	Alona Bosmina Canodaphina Canodaphina ostranorscoma ostranorscoma ostranorscoma ostranofo centopica centonius Brachionus Euchinanis Fluma Hevaritria Keratella Keratel
notes	High dertrus (Inde) to meet taly, High dertrus, Unde) to meet taly,	High algae and defitus. Unable to meet taly, High algae and defitus. Unable to meet taly,
time	11:30 11:30	1127 1127 1127 1127 1127 1127 1127 1127
date	12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019 12-Sep.2019	(2.5ap.2019 (2.5ap.2019)(2.5ap
container ID	1909120032.6 1 1909120032.6 1	1909 120043-6 1909 120043-6 1900 120043-6 19
site	<u>ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ</u> ଅଭିନ କର କର କର କର କର କର କର କର କର	SMARS

s ss 🚽	0.0 # 0 # 0 # 0 # 0 # 0	00000000000000000000000000000000000000		0000000 0 0000000000000000000000000000
s biomass (Jug d.w./L)	0.000 0.000 0.002 0.003 0.003 0.003 0.003 0.005 0.005	0,005 0,005 0,007 0,0000 0,000000	0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
biomass t factor	0.003 0.009 0.018 0.018 0.018 0.030 0.030 0.030 0.030	0.535 2.581 2.581 0.048 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.0000000000	0.230 0.250 0.601 0.341 0.341 0.341 0.341 0.341 0.341 0.010 0.011 0.012 0.012 0.012 0.029 0.029 0.029	0.250 0.410 0.586 0.2386 0.217 0.238 0.2038 0.0038 0.006 0.006 0.006 0.002 0.00000000
1/#	0.058 0.029 0.116 0.087 0.058 0.087 0.087 0.087 0.087	$\begin{array}{c} 0.015\\ 0.054\\ 0.054\\ 0.065\\ 0.008\\ 0.$	0.010 0.010 0.0119 0.0119 0.0119 0.0129 0.0129 0.0110 0.0129 0.0129 0.0119 0.0119 0.0119 0.0119	0.115 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
total sample aliquot count #individuals volume (mi) factor counted (mi)	0 - 4 6 0 6 - 6 6	0 8 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2, 0 0 8, 0 0 0 2, 0 0 2, 0
count # factor	$\begin{array}{c} 0.03\\$	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
aliquot (ml)	200 200 200 200 200 200 200 200 200 200		$\begin{smallmatrix} 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 $	$\begin{smallmatrix} 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 $
total sample volume (ml)	$\begin{array}{c} 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500$	*****	250 250 250 250 250 250 250 250 250 250	235 235 235 235 235 235 235 235 235 235
tow volume filtered (L)	1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45 1374.45	981.75 981.75	1374.45 1377.45 1477.45 1477.4	785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40 785.40
net radius (cm)	*********	<u>ĸĸĸĸĸĸĸĸĸĸĸĸĸĸ</u> ĸĸĸ	XXXXXXXXXXXXXXXXXXXXXXX	**********
tow (m)	0.7 0.7 0.7 0.7 0.7 0.7 0.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	$\begin{array}{c} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $
division	Rottera Rottera Rottera Rottera Rottera Rottera Rottera Bivalvia	Cladocera Ostracoda Ostracoda Copepoda Copepoda Copepoda Rotifera	Cladocera Cladocera Cladocera Ostracoda Ostracoda Copepoda Copepoda Copepoda Rotifer	Cladocera Cladocera Cladocera Cladocera Ostracoda Ostracoda Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera
species	cochieans crassa tropica bula patulos vulgans pulcata veligans veliger	longinostris copepodid spp spp spp uncomis spp cochleans earlinae earlinae earlinae spp. vulgans spp. vulgans spp. vulgans veliger veliger	guttata sn. copepodid copepodid prasmus cochiearis cochiearis propica spp. vulgaris vulgaris veliger	longirostris sp. sp.aaricus paaricus paaricus sp. copepodid prasinus pr. copiseria contiseria contiseria contiseria
snueb	Kerztella Kerztella Kerztella Monostyla Platiouus Polyanthra Polyanthra Polyanthra Polyanthra Bivahia	Bosmina sortacció syclopoid auplii boleloid conochius Euchanis Keratella Keratella Keratella Keratella Romonsyla Monosyla Synchaeta Synchaeta Synchaeta	Alona Bosmina Ceriodaphina Ceriodaphina Ceriodaphina calanoid Tropocyclops of alouid Tropocyclops budeloid Keratella	Bosmina Bosmina Chydours Chydons Chydona Nyorypus calanod calanod cyclopoid Tropocyclops cyclopoid Tropocyclops Calana's Conchilus Euchanis Kerdela Kerdela Kerdela Kerdela
notes	High algae and derrtus. Unable to meer taily, High algae and derrtus. Unable to meer taily, High algae and derrtus. Unable to meer taily. High algae and derrtus. Unable to meer taily.	High algae and dertrus. Unable to meet tally, High algae and dertrus. Unable to meet tally. High algae and dertrus. Unable to meet tally.	High derthus. Unable to meet taily High derthus. Unable to meet taily	
time	11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45	00000000000000000000000000000000000000	1245 12245 12	1320 1320 1320 1320 1320 1320 1320 1320
date	12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019	(2.5ep.2019) (2.5e	12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019	12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019 12-58p-2019
container ID	1909120037-6 1 1909120037-6 1	1909120426 1 1909120426 1 190912045 1 190912045 1 190912045 1 190912045 1 190912045 1 19091200000000000000000	1909 120035 5 1909 120035 5 1909 120035 6 1909 12005 6 1900 12005 6 1000000000000000000000000000000000000	190912045 6 190912045 6 1909120005 6 19000000000000000000000000000000000000
atis	NEW1 19 NEW1 1	SFM2 15 SFM2 1	SREM 19 SREM 1	MOKEM 15 MOKEM 15 MOK

species biomass (µg d.w./L)	0.000 0.001 0.002 0.002 0.005 0.005	0.015 0.015 0.015 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000
biomass factor	0.004 0.013 0.052 0.052 0.035 0.035	0.440 0.790 0.790 0.078 0.054 0.004 0.004 0.009 0.009 0.009 0.009
#//	0.023 0.046 0.046 0.046 0.046 0.046 0.023 0.023	$\begin{array}{c} 0.037\\ 0.037\\ 0.019\\ 0.000\\ 0.$
aliquot count #individuals (ml) factor counted	-0008	0020-0
count #	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	$\begin{array}{c} 0.02\\$
aliquot (ml)	13.0 13.0 13.0 13.0 13.0 13.0	00000000000000000000000000000000000000
total sample volume (ml)	235 235 235 235 235 235 235 235 235	******
tow volume filtered (L)	785.40 785.40 785.40 785.40 785.40 785.40 785.40	687 23 687 23
net radius (cm)	8 <i>88888</i> 88	******
tow (m)	4 4 4 4 0 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0	, , , , , , , , , , , , , , , , , , ,
division	Rotifera Rotifera Rotifera Rotifera Bivalvia	Cladocera Ostracoda Ostracoda Copepoda Copepoda Copepoda Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera Rotifera
species	closterocerca lumaris patulus quadricomis vulgans bicristata veliger	longirostris copepodid copeloadid copheans eranae eranae tropica pabulus
Snueb	Monostyla Monostyla Plationus Platyias Polyarthra Trichocerca Bivatvia	Bosmina estracod calanoid cycloppid naupli naupli Kerzella Kerzella Kerzella Kerzella Monostyla Monostyla Plationus
notes	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	High demtus Sample not preserved. Unable to meet taily High demtus. Sample not preserved. Unable to meet taily
time	13.20 13.20 13.20 13.20 13.20	13.30 13.300
date	12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019 12-Sep-2019	12-58P_2019 13.30 12-58P_2019 13.30 13-58P_2019
container ID	WOREM 19091200456 13.56p.2019 13.20 WOREM 19091200456 13.58p.2019 13.20	8081120041-0 12.540-2019 (13.0) 13.000000000000000000000000000000000000
site	MOKEM 1 MOKEM 1 MOKEM 1 MOKEM 1 MOKEM 1 MOKEM 1	SEMI CONTRACTOR CONTRA

Appendix 9. Clam Biomass and Grazing Data Table

Mean values for Corbicula fluminea

Ś	Station	Position	Biomass (g/m²)	Density (clams/m²)	Shell length (mm)	Grazing Rate (m pumped/day)	Water depth (m)	Turnover rate (water column/day)	Full turnover (days)
	5	Vest	3.829	94.9	14.8	0.331	7.2	0.046	21.7
	~	Middle	0.574	13.0	15.4	0.053	7.85	0.007	148.3
		East	9.297	222.4	14.8	0.760	7.15	0.106	9.4
		West	0.136	6.5	11.4	0.013	6.35	0.002	497.9
		Middle	0.102	6.6	10.4	0.010	7.85	0.001	815.1
		East	0.823	30.7	13.0	0.075	10.35	0.007	137.9
		West	3.478	169.9	11.3	0.300	6.05	0.050	20.2
SR3		Middle	0.260	9.2	13.1	0.024	6.55	0.004	270.0
		East	2.702	65.2	15.2	0.238	8.55	0.028	36.0
		West	3.142	73.2	15.3	0.275	8.25	0.033	30.0
		Middle	1.050	31.1	14.2	0.095	7.8	0.012	81.9
		East	0.254	12.6	11.4	0.024	7.85	0.003	331.7
		West	2.463	57.1	15.6	0.217	6.2	0.035	28.5
		Middle	1.892	54.8	14.4	0.168	6.15	0.027	36.5
		East	3.885	113.6	14.2	0.334	6.4	0.052	19.1
		West	0.354	16.4	12.5	0.033	4.75	0.007	144.9
		Middle	5.862	272.8	12.4	0.484	6.45	0.075	13.3
		East	0.034	1.2	12.0	0.003	5.6	0.001	1758.8
		West	1.063	37.2	13.3	0.096	5.95	0.016	61.8
GS3		Middle	1.466	53.6	13.0	0.131	6.1	0.022	46.4
GS3		East	1.452	33.1	15.1	0.131	6.1	0.021	46.6
GS4		West	3.308	103.6	13.7	0.287	7.1	0.040	24.7
GS4		Middle	2.448	79.7	13.7	0.215	6.45	0.033	30.0
GS4		East	0.554	20.7	13.2	0.051	9	0.008	117.8
NFM1		West	0.879	10.2	19.1	0.081	5.75	0.014	71.2
NFM1		Middle	1.050	10.6	20.1	0.096	8.1	0.012	84.1
NFM1		East	1.824	11.7	23.8	0.165	8.35	0.020	50.5
NFM2		West	0.236	5.6	15.6	0.022	5.2	0.004	236.1
NFM2		Middle	0.009	0.2	17.4	0.001	9.6	0.000	11580.5
NFM2		East	0.025	0.5	16.3	0.002	9.35	0.000	3865.2
NFM3		West	1.511	11.0	23.3	0.137	6.55	0.021	47.7

Mean values for Corbicula fluminea

Full turnover (days)	87.6	NO CLAMS	26.1	171.2	634.2	130.1	70.8	326.2	29.7	49.1	99.1	39.7	36.9	15.5	8.1	0.0	59.7	470.7	63.8	954.8
Turnover rate (water column/day)	0.011	NO CLAMS	0.038	0.006	0.002	0.008	0.014	0.003	0.034	0.020	0.010	0.025	0.027	0.065	0.123	0.111	0.017	0.002	0.016	0.001
pth	8.7																			
Grazing Rate (m pumped/day)	0.099	NO CLAMS	0.253	0.035	0.006	0.019	0.035	0.008	0.116	0.070	0.031	0.088	0.084	0.226	0.716	1.011	0.095	0.009	0.062	0.004
Shell length (mm)	20.9	NO CLAMS	18.9	14.2	18.6	12.4	12.9	9.5	14.6	14.7	16.2	14.5	17.0	17.0	21.3	20.0	18.4	12.9	16.1	10.3
Density (clams/m²)	9.8	0	35.8	10.4	1.0	7.9	11.0	7.1	27.3	16.8	5.5	25.5	14.5	39.8	70.3	116.3	12.4	3.1	10.3	1.8
Biomass (g/m²)	1.083	0	2.850	0.377	0.068	0.201	0.372	0.086	1.277	0.764	0.335	0.967	0.916	2.539	8.464	12.289	1.041	0.100	0.670	0.041
Position	Middle	East	West	Middle	East															
Station	NFM3	NFM3	NFM4	NFM4	NFM4	SFM1	SFM1	SFM1	SFM2	SFM2	SFM2	SFM3	SFM3	SFM3	SFM4	SFM4	SFM4	MOKEM	MOKEM	MOKEM
Date	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019	9/25/2019